The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our simulation program and tested..
The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our four-legged robot.
로봇의 실시간 장애물 회피 방법은 연구되어 왔고 실행되어 왔다. 이러한 방법을 vector field histogram(VFH)라 하며 이러한 방법은 알려져 있지 않는 장애물의 발견과 장애물과의 충돌을 피하는 동시에 목표점으로의 로봇의 이동을 위한 알고리즘이다. The vector field histogram(VFH)방법은 world model로 이차원 Cartesian histogram grid를 이용하였다. VFH 방법은 Vehicle을 원하는 데로 컨트롤하기 위한 과정으로 두 단계 데이터 줄이는 과정이다. Histogram grid 의 첫 번째 단계는 로봇의 순간위치를 구성하기 위한 일 차원 polar histogram에 포함된 각 섹터의 값은 polar obstacle density(POD)로 방향을 표시한다.(중략)
본 논문에서는 다차원 인접화소 간 명암차 기반 극좌표의 비선형 양자화 히스토그램을 이용한 서명인식을 제안한다. 다차원 인접화소 간 명암차는 기준화소를 중심으로 횡방향, 종방향, 대각 방향, 역대각 방향 각각의 이웃화소 간 명암차이고, 극좌표는 횡과 종 방향 및 대각과 비대각 방향 각각의 직교좌표로부터 변환된 좌표이며, 비선형 양자화 히스토그램은 반복계산 기법인 Lloyd 알고리즘에 의해 극좌표 값을 비균일 양자화한 히스토그램이다. 여기서 4방향 명암차의 극좌표 히스토그램은 대응하는 화소간의 상관성을 좀 더 많이 고려할 뿐만 아니라 히스토그램의 수를 감소시켜 계산부하를 줄이기 위함이다. 또한 비선형 양자화는 화소간의 명암변화의 속성을 더욱 더 잘 반영할 뿐만 아니라 저차원의 히스토그램 레벨을 얻기 위함이다. 제안된 기법을 256*256 픽셀의 90개(3인*30개) 서명들을 대상으로 city-block거리, Euclidean 거리, 순서값, 그리고 정규상호상관계수 각각의 정합척도에 기반 한 실험결과, 선형 양자화 기반 히스토그램에 비해 우수한 인식성능을 가지며, Euclidean 거리가 가장 우수한 정합척도임을 확인하였다.
Journal of information and communication convergence engineering
/
제17권1호
/
pp.67-73
/
2019
In the current era of digital technology, and with the help of existing software, digital photo manipulation is becoming easier and faster. One example of this is the development of powerful image processing software that makes it easy for a digital image to be manipulated and edited. It is therefore very important to protect and maintain public trust in digital images. Several methods have been developed to detect image manipulation. In this paper, we compare two methods for detecting image duplication due to copy-move actions, namely the polar coordinate system and the histogram of oriented gradients methods. The former is a method based on the transfer of a Cartesian image to a polar form, making it easy to tell whether there are objects that have undergone a copy/move in an image, while the latter is a method for retrieving information related to the distribution, which uses a target in the local area as a tool to represent the shape of the target. We compare the accuracy, speed and memory usage of these two methods.
Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.
In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.
An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.
A new local path planning algorithm using DPH (distance profile histogram) is suggested in this paper. The proposed method makes a grid type world map using distance values from multiple ultrasonic sensors and genrates local points through which the mobile robot can avoid obstcles safely. The DPH (distance profile historgram) represents geometrical arrangement of obstacles around the robot in the local polar coordinate system which is assumed to be atached to the robot. To control robot's navigation, a three-layered control structure is adopted. The proposed local path planning algorithm is placed on the top level. And a point-to-point translation controller takes the middle level. The bottom level consists of a velcoity servo and sonar driver modules which take charge of driving physical hardwares. The validity of the propsoed method is demonstated through several experiments.
This paper presents an approach to Back-propagation and Radial Basis Function neural network method with various training set for automatic vehicle detection from aerial images. The initial extraction of candidate object is based on Mean-shift algorithm with symmetric property of a vehicle structure. By fusing the density and the symmetry, the method can remove the ambiguous objects and reduce the cost of processing in the next stage. To extract features from the detected object, we describe the object as a log-polar shape histogram using edge strengths of object and represent the orientation and distance from its center. The spatial histogram is used for calculating the momentum of object and compensating the direction of object. BPNN and RBFNN are applied to verify the object as a vehicle using a variety of non-car training sets. The proposed algorithm shows the results which are according to the training data. By comparing the training sets, advantages and disadvantages of them have been discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.