• Title/Summary/Keyword: Polar Derivative

Search Result 37, Processing Time 0.022 seconds

Artificial Metalloproteases with Broad Substrate Selectivity Constructed on Polystyrene

  • Ko, Eun-Hwa;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1917-1923
    • /
    • 2004
  • Although the proteolytic activity of the Cu(II) complex of cyclen (Cyc) is greatly enhanced upon attachment to a cross-linked polystyrene (PS), the Cu(II)Cyc-containing PS derivatives reported previously hydrolyzed only a very limited number of proteins. The PS-based artificial metalloproteases can overcome thermal, mechanical, and chemical instabilities of natural proteases, but the narrow substrate selectivity of the artificial metalloproteases limits their industrial application. In the present study, artificial metalloproteases exhibiting broad substrate selectivity were synthesized by attaching Cu(II)Cyc to a PS derivative using linkers with various structures in an attempt to facilitate the interaction of various protein substrates with the PS surface. The new artificial metalloproteases hydrolyzed all of the four protein substrates (albumin, myoglobin, ${\gamma}$-globulin, and lysozyme) examined, manifesting $k_{cat}/K_m$ values of 28-1500 $h_{-1}M_{-1}$ at 50 $^{\circ}C$. The improvement in substrate selectivity is attributed to steric and/or polar interaction between the bound protein and the PS surface as well as the hydrophobicity of the microenvironment of the catalytic centers.

Effect of Solar Irradiances on Growth and Pigmentation of Antarctic Red Algae, Kallymenia antarctica and Palmaria decipiens

  • Han, Tae-Jun;Han, Young-Seok;Lee, Min-Soo;Park, Jin-Hee;Cho, Man-Gi;Koo, Jae-Gun;Kang, Sung-Ho
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2003
  • Growth and pigment responses to different levels of solar radiation with or without ultraviolet (UV)-B component $({\lambda}=280-315nm)$ were investigated in Antarctic rhodophytes, Kallymenia antarctica and Palmaria decipiens, collected around King George Island during the summer of 2000. In K. antarctica specific growth rate, based on thallus area or fresh weight, decreased with increasing solar irradiances while P. decipiens were relatively insensitive to the effects of light. It is noticeable that the presence or absence of UV-B had no significant effect on growth for either species. However, K. antarctica showed a more pronounced reduction in chlorophyll (Chl a) concentrations at higher irradiances in the presence of UV-B. In P. decipiens, Chl a concentrations did not differ despite radiation level fluctuations being lower albeit than initial measurements. Thallus thickness was greater in K. antarctica than in P. decipiens. There were higher relative amounts of UV-absorbing pigments (UVAPs) in P. decipiens than in K, antarctica. The single absorbance peak obtained from the methanol extracts was resolved into three (316,332 and 346nm) in K. antarctica and four peaks (315,326,333 and 349 nm) in Palmaria as a result of the fourth-derivative. After 7 days exposure to solar radiation, the amount of UVAPs in K. antarctica was significantly reduced to a similar degree at all light levels, whereas that of P. decipiens remained unchanged except at 5% of surface irradiance. High performance liquid chromatography (HPLC) analysis of purified extracts indicated that P. decipiens possesses porphyra-334 in addition to three other mycosporine-like anlino acids (MAAs; asterina-330, palythine, shinorine), which are commonly present in K. antarctica. Significantly lower tolerance of K. antarctica to high levels of solar radiation may be connected with its usual absence in the eulittoral, while the active growth and elastic pigment responses of P. decipiens over a wide range of solar irradiance levels up to full sunlight seems to correspond well with its wide vertical distribution from rock pools down to 25-30m.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

  • Lu, Xinyao;Wang, Guangsheng;Feng, Yue;Liu, Song;Zhou, Xiaoman;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1701-1707
    • /
    • 2016
  • Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this N-terminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

Influence of UV-B Radiation on Photosynthesis, Growth and Pigmentation of Chondrus ocellatus (Rhodophyta) from Shallow Water

  • Taejun Han;Han, Young-Seok;Cho, Man-Gee;Park, Jin-Hee;Goo, Jae-Gun;Kang, Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.368-376
    • /
    • 2003
  • The UV-B sensitivity was tested for the intertidal species Chondrus ocellatus from Korea, by measuring photosynthesis estimated as effective quantum yield ($\Phi_{PSII}$) of photosystem II (PS II), growth and content and composition of photosynthetic pigments and UV-absorbing pigments (UVAPs). The $$\Phi_{PSII}$ of the alga decreased with increasing time of exposure to UV-B radiation, followed by fast and nearly full recovery indicating dynamic photoinhibiton. Fresh weight-based growth and pigment contents of C. ocellatus were not seriously affected by UV-B radiation. A single broad peak at 327 nm was obtained from methanol extracts of C. ocellatus, and the absorbance peak increased with increasing UV. The single peak was resolved into three peaks (311, 330 and 336 nm) by the fourth -derivative, and quantitative change in response to UV-B radiation occurred only at 330 nm. High performance liquid chromatography (HPLC) analysis of purified extracts indicated that three MAAs (mycosporine-like amino acids) are present, asterina 330, palythine and shinorine. Field observations during three growing months showed that C. ocellatus exhibit the highest amount of UVAPs in May followed by July and little trace in September, coinciding with the species' phenology. In an ecological context, dynamic photoinhibition as well as accumulation of UVAPs may enable the shallow water red alga C. ocellatus to be well adapted to high UV-B environments.

Photochromic Properties of Cellulose Derivatives Having Spirobenzopyran Group (스피로벤조피란을 포함하는 셀룰로오스 유도체의 광변색 특성)

  • Xiangdan, Li;Kim, Eun-Kyoung;Lee, Myong-Hoon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Cellulose acetate derivatives containing 6-(p-hexyloxyphenyl)carbonyl spirobenzopyran (CA-COSP) were prepared from base-catalyzed etherification of cellulose acetate, and their physical and photochromic properties were characterized. The degree of substitution of COSP was calculated from the amount of residual hydroxyl groups in cellulose acetate measured by the $^1H$-NMR and UV spectrometric data. It was ranging from 0.87 to 45.5% depending on the reaction condition. UV/vis spectrometry of the resulting CA-COSP revealed that the polymer shows a reversible color change by changing its color from colorless to blue upon UV irradiation forming a merocyanine structure, and returning back again to colorless spiropyran structure by visible light or by heat. The rate of color change was faster in solution than in the film. In the more polar solvent, the more stable was the resulting merocyanine, and the slower was the rate of reverse reaction to spiropyran. Compared to COSP blended with cellulose acetate, in which a phase separation was observed for samples containing more than 0.9 wt% of COSP, up to 48 wt% of COSP could be blended in CA-COSP without phase separation.