DOI QR코드

DOI QR Code

Effect of Solar Irradiances on Growth and Pigmentation of Antarctic Red Algae, Kallymenia antarctica and Palmaria decipiens

  • Han, Tae-Jun (Division of Biology and Chemistry, University of Incheon) ;
  • Han, Young-Seok (Division of Biology and Chemistry, University of Incheon) ;
  • Lee, Min-Soo (Division of Biology and Chemistry, University of Incheon) ;
  • Park, Jin-Hee (Engineering Research Centre, Dongseo University) ;
  • Cho, Man-Gi (Engineering Research Centre, Dongseo University) ;
  • Koo, Jae-Gun (College of Ocean Science and Technology, Kunsan University) ;
  • Kang, Sung-Ho (Polar Environment Research Division, KORDI)
  • Published : 2003.12.31

Abstract

Growth and pigment responses to different levels of solar radiation with or without ultraviolet (UV)-B component $({\lambda}=280-315nm)$ were investigated in Antarctic rhodophytes, Kallymenia antarctica and Palmaria decipiens, collected around King George Island during the summer of 2000. In K. antarctica specific growth rate, based on thallus area or fresh weight, decreased with increasing solar irradiances while P. decipiens were relatively insensitive to the effects of light. It is noticeable that the presence or absence of UV-B had no significant effect on growth for either species. However, K. antarctica showed a more pronounced reduction in chlorophyll (Chl a) concentrations at higher irradiances in the presence of UV-B. In P. decipiens, Chl a concentrations did not differ despite radiation level fluctuations being lower albeit than initial measurements. Thallus thickness was greater in K. antarctica than in P. decipiens. There were higher relative amounts of UV-absorbing pigments (UVAPs) in P. decipiens than in K, antarctica. The single absorbance peak obtained from the methanol extracts was resolved into three (316,332 and 346nm) in K. antarctica and four peaks (315,326,333 and 349 nm) in Palmaria as a result of the fourth-derivative. After 7 days exposure to solar radiation, the amount of UVAPs in K. antarctica was significantly reduced to a similar degree at all light levels, whereas that of P. decipiens remained unchanged except at 5% of surface irradiance. High performance liquid chromatography (HPLC) analysis of purified extracts indicated that P. decipiens possesses porphyra-334 in addition to three other mycosporine-like anlino acids (MAAs; asterina-330, palythine, shinorine), which are commonly present in K. antarctica. Significantly lower tolerance of K. antarctica to high levels of solar radiation may be connected with its usual absence in the eulittoral, while the active growth and elastic pigment responses of P. decipiens over a wide range of solar irradiance levels up to full sunlight seems to correspond well with its wide vertical distribution from rock pools down to 25-30m.

Keywords

References

  1. Aguilera, J., U. Karsten, H. Lippert, B. Vogele, E. Philipp, D. Hanelt, and C. Wiencke. 1999. Effects of solar radiation on growth, photosynthesis and respiration of marine macroalgae from the Arctic. Mar. Ecol. Prog. Ser., 191, 190-119.
  2. Aguilera, J., K. Bischof, U. Karsten, D. Hanelt, and C. Wiencke. 2002. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defense systems against high light stress. Mar. Biol., 140, 1087-1095. https://doi.org/10.1007/s00227-002-0792-y
  3. Altamirano, M., A. Flores-Moya, and F.L. Figueroa. 2000. Long-term effects of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot. Mar., 43, 119-126. https://doi.org/10.1515/BOT.2000.012
  4. Bischof, K., D. Hanelt, J. Aguilera, U. Karsten, B. Vogele, T. Sawall, and C. Wiencke. 2002. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation. Mar. Biol., 140, 1097-1106. https://doi.org/10.1007/s00227-002-0795-8
  5. Bischof, K., D. Hanelt, and C. Wiencke. 1998. UV-radiation can affect depth-zonation of Antarctic macoralgae. Mar. Biol., 131, 597-605. https://doi.org/10.1007/s002270050351
  6. Butler, W.L. and D.W. Hopkins. 1970. Higher derivative analysis of complex absorption spectra. Photochem. Photobiol., 12, 439-450. https://doi.org/10.1111/j.1751-1097.1970.tb06076.x
  7. Chung, H., Y.S. Oh, I.K. Lee, and D.-Y. Kim. 1994. Macroalgal vegetation of Maxwell Bay in King George Island, Antarctica. Kor. J. Phycol., 9, 47-58.
  8. Drew, K.H. and R.M. Hastings. 1992. A year-round ecophysiological study of Himanthothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island, Antarctica. Phycologia, 31, 262-277.
  9. Dring, M.J., A. Wagner, J. Boeskov, and K. Luning. 1996. Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season, and length of irradiation. Eur. J. Phycol., 31, 293-302. https://doi.org/10.1080/09670269600651511
  10. Dring, M.J., A. Wagner, and K. Luning. 2001. Contribution of the UV component of natural sunlight to photoinhibition of photosynthesis in six species of subtidal brown and red seaweeds. Plant Cell Environ., 24, 1153-1164. https://doi.org/10.1046/j.1365-3040.2001.00765.x
  11. Dunlap, W.C. and J.M. Shick. 1998. Ultraviolet radiationabsorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol., 34, 418-430. https://doi.org/10.1046/j.1529-8817.1998.340418.x
  12. Ehling-Schulz, M., W. Bilger, and S. Scheler. 1997. UV-Binduced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol., 179, 1940-1945.
  13. Franklin, L.A. and R.M. Forster. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol., 32, 207-232.
  14. Gantt, E. 1990. Pigmentation and photoacclimation. p. 203-219. In: Biology of red algae, ed. by K.M. Cole and R.G. Sheath. Cambridge Univ. Press, Cambridge.
  15. Grobe, C.W. and T.M. Murphy. 1998. Solar ultraviolet-B radiation effects on growth and pigment composition of the intertidal alga Ulva expansa (Setch.) S. and G. (Chlorophyta). J. Exp. Mar. Biol. Ecol., 225, 39-51. https://doi.org/10.1016/S0022-0981(97)00210-4
  16. Hader, D.-P. 2001. Adaptation to UV stress in algae. p. 173-202. In: Algal adaptation to environmental stresses, ed.by L.C. Rai and J.P. Gaur. Springer, Berlin.
  17. Hader, D.-P., H. Herrmann, and R. Santas. 1996. Effects of solar radiation and solar radiation deprived of UV-B and total UV on photosynthetic oxygen production and pulse amplitude modulated fluorescence in the brown alga Padina pavonia. FEMS Microbiol. Ecol., 19, 53-61. https://doi.org/10.1111/j.1574-6941.1996.tb00198.x
  18. Hader, D.-P. and F.L. Figueroa. 1997. Photoecophysiology of marine macroalgae. Photochem. Photobiol., 66, 1-14. https://doi.org/10.1111/j.1751-1097.1997.tb03132.x
  19. Han, T., H. Chung, and S.-H. Kang. 1998. UV photobiology of marine macroalgae. Kor. J. Polar Res., 9, 37-46.
  20. Han, T., B.-J. Park, Y.-S. Han, S.-H. Kang, and S.-H. Lee.2002. Photosynthesis and formation of UV-absorbing substances in Antarctic macroalgae under different levels of UV-B radiation. Kor. J. Exp. Biol., 20, 205-215.
  21. Han, T., S.-J. Park, M. Lee, Y.-S. Han, S.-H. Kang, H. Chung, and S.-H. Lee. 2001. Effects of artificial UV-B and solar radiation on four species of Antarctic rhodophytes. Ocean Polar Res., 23, 389-394.
  22. Hanelt, D. 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol., 131, 361-369. https://doi.org/10.1007/s002270050329
  23. Hanelt, D., C. Wiencke, and W. Nultsch. 1996. The influence of UV radiation on the photosynthesis of Arctic macroalgae in the field. J. Photochem. Photobiol. B. Biol., 38, 40-47. https://doi.org/10.1016/S1011-1344(96)07415-5
  24. Helbling, E.W., B.E. Chalker, W.C. Dunlap, O. Holm. Hansen, and V.E. Villafane. 1996. Photoacclimation of Antarctic marine diatom to solar ultraviolet radiation. J. Exp. Mar. Biol. Ecol., 204, 85-101. https://doi.org/10.1016/0022-0981(96)02591-9
  25. Herbert, S.K. and J.R. Waaland. 1988. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra. Mar. Biol., 97, 1-7. https://doi.org/10.1007/BF00391239
  26. Hernando, M., J.I. Carreto, M.O. Carignan, G.A. Ferreyra, and C. Gross. 2002. Effects of solar radiation on growth and mycosporine-like amino acids content in Thalassiosira sp, an Antarctic diatom. Polar Biol., 25, 12-20. https://doi.org/10.1007/s003000100306
  27. Jerlov, N.G. 1966. Aspects of light measurements in the sea. p. 91-98. In: Light as an ecological factor, ed. by R. Bainbridge, G.C. Evans and O. Rackham. Blackwell, Oxford.
  28. Jones, A.E. and J.D. Shanklin. 1995. Continued decline of total ozone over Halley, Antarctica, since 1985. Nature, 376, 409-411. https://doi.org/10.1038/376409a0
  29. Kain, J.M. 1987. Seasonal growth and photoinhibition in Plocamium cartilagineum (Rhodophyta) off the Isle of Man. Phycologia, 26, 88-99. https://doi.org/10.2216/i0031-8884-26-1-88.1
  30. Karentz, D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarctic Res. Ser., 62, 93-110. https://doi.org/10.1029/AR062p0093
  31. Karentz, D., F.S. McEuen, M.C. Land, and W.C. Dunlap. 1991. Survey of mycosporine-like amino acid compounds in Antarctic organisms: potential protection from ultraviolet exposure. Mar. Biol., 108, 157-166. https://doi.org/10.1007/BF01313484
  32. arsten, U., K. Bischof, D. Hanelt, H. Tug, and C. Wiencke. 1999. The effects of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the epidemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol. Plant., 105, 58-66. https://doi.org/10.1034/j.1399-3054.1999.105110.x
  33. Karsten, U., L.A. Franklin, K. Lüning, and C. Wiencke. 1998a. Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta). Planta, 205, 257-262. https://doi.org/10.1007/s004250050319
  34. Karsten, U., T. Sawall, and C. Wiencke. 1998b. A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol. Res., 46, 271-278. https://doi.org/10.1046/j.1440-1835.1998.00144.x
  35. Kloser, H., G. Ferreyra, I. Schloss, G. Mercuri, F. Laturnus, and A. Curtosi. 1993. Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King George Island, South Shetlands). J. Mar. Syst., 4, 289-301. https://doi.org/10.1016/0924-7963(93)90025-H
  36. Lambers, H., F.S. Chapin III, and T.L. Pons. 1998. Plant physiological ecology. Springer, New York, 540 p.
  37. Lesser, M.P. 1996. Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellates Prorocentrum micans. Mar. Ecol. Prog. Ser., 132, 287-297. https://doi.org/10.3354/meps132287
  38. Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans., 11, 591-592.
  39. Luder, U.H., J. Knoetzel, and C. Wiencke. 2001. Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol. Plant., 112, 572-581. https://doi.org/10.1034/j.1399-3054.2001.1120416.x
  40. Luder, U.H., C. Wiencke, and J. Knoetzel. 2002. Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): a study to simulate Antarctic winter sea ice cover. J. Phycol., 38, 904-913. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01071.x
  41. Mackerness, S.A.H., J.P. Butt, B.R. Jordan, and B. Thomas. 1996. Amelioration of ultraviolet-B induced down-regulation of m-RNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis. J. Plant Physiol., 148, 100-106. https://doi.org/10.1016/S0176-1617(96)80300-2
  42. Michler, T., J. Aguilera, D. Hanelt, K. Bischof, and C. Wiencke. 2002. Long-term effects of ultraviolet radiation on growth and photosynthetic performance of polar and cold-temperate macroalgae. Mar. Biol., 140, 1117-1127. https://doi.org/10.1007/s00227-002-0791-z
  43. Oren, A. 1997. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J., 14, 231-240. https://doi.org/10.1080/01490459709378046
  44. Osmond, C.B. 1994. What is photoinhibition? Some insights from sun and shade plants. p. 1-24. In: Photoinhibition of photosynthesis: from the molecular mechanisms to the field, ed. by N.R. Baker and N.R. Bowyer. BIOS Scientific Pub., Oxford.
  45. Post, A. and A.W.D. Larkum. 1993. UV-absorbing pigments, photosynthesis and UV exposure in Antarctica: comparison of terrestrial and marine algae. Aquat. Bot., 45, 231-243. https://doi.org/10.1016/0304-3770(93)90023-P
  46. Rivkin, R.B. and M. Putt. 1987. Photosynthesis and cell division by Antarctic microalgae: comparison of benthic, planktonic and ice algae. J. Phycol., 23, 223-229. https://doi.org/10.1111/j.1529-8817.1987.tb04129.x
  47. Sinha, R.P., M. Klisch, A. Groniger, and D.-P. Hader. 1998. Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J. Photochem. Photobiol. B. Biol., 47, 83-94. https://doi.org/10.1016/S1011-1344(98)00198-5
  48. Skottsberg, C. 1923. Botanische Ergebnisse der Schweidischen Expedition nach Patagonien und Feuerlande 1907-1909. IX. Marine algae. 2. Rhodophyceae. K. Svenska Vetensk Akad. Handl., 63, 1-70.
  49. Sokal, R.R. and F.J. Rholf. 1969. Biometry. Freeman, SanFrancisco, 776 p.
  50. Vernet, M. and K. Whitehead. 1996. Release of ultravioletabsorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra. Mar. Biol., 127, 35-44. https://doi.org/10.1007/BF00993641
  51. Weyman, G., D.N. Thomas, and C. Wiencke. 1997. Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia, 36, 395-405. https://doi.org/10.2216/i0031-8884-36-5-395.1
  52. Wiencke, C., I. Gomez, H. Pakker, A. Flores-Moya, M. Altamirano, D. Hanelt, K. Bischof, and F.L. Figueroa. 2000. Impact of UV radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: Implications for depth zonation. Mar. Ecol. Prog. Ser., 197, 217-229. https://doi.org/10.3354/meps197217

Cited by

  1. The study on highly expressed proteins as a function of an elevated ultraviolet radiation in the copepod, Tigriopus japonicus vol.47, pp.2, 2012, https://doi.org/10.1007/s12601-012-0008-4
  2. Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress vol.26, pp.5, 2014, https://doi.org/10.1007/s10811-014-0325-3