• Title/Summary/Keyword: Poisson regression

Search Result 241, Processing Time 0.031 seconds

A Study on Risk Evaluation of Crime in the Seoul Metropolitan Area based on Poisson Regression Model

  • Kim, Hag-Yeol;Yu, Hye-Kyung;Park, Man-Sik;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.865-875
    • /
    • 2012
  • In this study, we identify the variables that affect the number of crime and spatial correlation in the Seoul metropolitan area, in addition, we measure the relative risk on the incidence of crime by a Poisson regression model. We suggest a statistical methodology to make a risk map for crime based on relative risk instead of the total event of crime by region using the Geographic Information System. To demonstrate the use and advantages of this methodology, this study presents an analyses of the total crime count in 25 wards in the Seoul metropolitan area.

Variable selection in Poisson HGLMs using h-likelihoood

  • Ha, Il Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1513-1521
    • /
    • 2015
  • Selecting relevant variables for a statistical model is very important in regression analysis. Recently, variable selection methods using a penalized likelihood have been widely studied in various regression models. The main advantage of these methods is that they select important variables and estimate the regression coefficients of the covariates, simultaneously. In this paper, we propose a simple procedure based on a penalized h-likelihood (HL) for variable selection in Poisson hierarchical generalized linear models (HGLMs) for correlated count data. For this we consider three penalty functions (LASSO, SCAD and HL), and derive the corresponding variable-selection procedures. The proposed method is illustrated using a practical example.

Kernel Poisson Regression for Longitudinal Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1353-1360
    • /
    • 2008
  • An estimating procedure is introduced for the nonlinear mixed-effect Poisson regression, for longitudinal study, where data from different subjects are independent whereas data from same subject are correlated. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented, which indicate the performance of the proposed estimating procedure.

  • PDF

Bayesian analysis for the bivariate Poisson regression model: Applications to road safety countermeasures

  • Choe, Hyeong-Gu;Lim, Joon-Beom;Won, Yong-Ho;Lee, Soo-Beom;Kim, Seong-W.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.851-858
    • /
    • 2012
  • We consider a bivariate Poisson regression model to analyze discrete count data when two dependent variables are present. We estimate the regression coefficients as sociated with several safety countermeasures. We use Markov chain and Monte Carlo techniques to execute some computations. A simulation and real data analysis are performed to demonstrate model fitting performances of the proposed model.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

Analytical Studies on Basic Creep of Concrete under Multiaxial Stresses

  • Kwon, Seung-Hee;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.465-472
    • /
    • 2003
  • Creep Poisson's ratio reported by previous experimental studies on multiaxial creep of concrete was controversial. The Poisson's ratio is very sensitive to small experimental error that is inevitably induced, and the sensitivity may cause the controversy. It is difficulty to find out the properties on multiaxial creep of concrete. Therefore, a new approach method to analyze the test results is needed to precisely understand the properties on multiaxial creep of concrete. In this study, microplane model is used as a new approach method in analyzing the multiaxial creep test data. The six data sets extracted from the literature are fitted from regression analysis. Double-power law as a model representing volumetric and deviatoric creep evolutions on microplane is used, and six parameters in volumetric and deviatoric compliances are determined on the assumption that the volumetric and deviatoric creep strains are linearly proportional to corresponding stresses. The optimum fits give very accurate description of the test data. The Poisson's ratio calculated from the optimum fits varies with time and does not depends on the stress states, namely, uniaxial, biaxial, and triaxial stress states. Regression analysis is also performed on the assumption that the Poisson's ratio remains constant with titre. The constant Poisson's ratio can be use in practice without serious error.

  • PDF

Analysis of Food Poisoning via Zero Inflation Models

  • Jung, Hwan-Sik;Kim, Byung-Jip;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.859-864
    • /
    • 2012
  • Poisson regression and negative binomial regression are usually used to analyze counting data; however, these models are unsuitable for fit zero-inflated data that contain unexpected zero-valued observations. In this paper, we review the zero-inflated regression in which Bernoulli process and the counting process are hierarchically mixed. It is known that zero-inflated regression can efficiently model the over-dispersion problem. Vuong statistic is employed to compare performances of the zero-inflated models with other standard models.

Development of Roundabout Accident Models by Region (지역별 회전교차로 사고모형 개발 및 논의)

  • Son, Seul Ki;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • PURPOSES : The goal of this study is the development of roundabout accident models for urban and non-urban areas. METHODS : This study performed a comparative analysis of the regional factors affecting accidents. Traffic accident data were collected for the period 2010~2014 from the TAAS data set of the Road Traffic Authority. To develop the roundabout accident models, the Poisson and negative binomial regression models were used. A total of 25 explanatory variables such as geometry, and traffic volume were used. RESULTS : The key findings are as follows: First, it was found that the null hypotheses that the number of accidents is the same should be rejected. Second, three Poisson regression accident models, which are statistically significant (${\rho}^2$ of 0.154 and 0.385) were developed. Third, it was noted that although the common variable of the three models (models I~III) is the number of entry lanes, the specific variables are entry lane width, roundabout sign, number of circulatory roadways, splitter island, number of exit lanes, exit lane width, number of approach roads, and truck apron. CONCLUSIONS : The results of this study can provide suggestive countermeasures for decreasing the number of roundabout accidents.

Bayesian Conway-Maxwell-Poisson (CMP) regression for longitudinal count data

  • Morshed Alam ;Yeongjin Gwon ;Jane Meza
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • Longitudinal count data has been widely collected in biomedical research, public health, and clinical trials. These repeated measurements over time on the same subjects need to account for an appropriate dependency. The Poisson regression model is the first choice to model the expected count of interest, however, this may not be an appropriate when data exhibit over-dispersion or under-dispersion. Recently, Conway-Maxwell-Poisson (CMP) distribution is popularly used as the distribution offers a flexibility to capture a wide range of dispersion in the data. In this article, we propose a Bayesian CMP regression model to accommodate over and under-dispersion in modeling longitudinal count data. Specifically, we develop a regression model with random intercept and slope to capture subject heterogeneity and estimate covariate effects to be different across subjects. We implement a Bayesian computation via Hamiltonian MCMC (HMCMC) algorithm for posterior sampling. We then compute Bayesian model assessment measures for model comparison. Simulation studies are conducted to assess the accuracy and effectiveness of our methodology. The usefulness of the proposed methodology is demonstrated by a well-known example of epilepsy data.

A study on the impact analysis of blank sailing in the shipping industry using poisson regression analysis (포아송 회귀분석을 이용한 해운선사의 블랭크 세일링 영향 분석 연구)

  • Won-Hyeong Ryu;Bong-Keun Choi;Jong-Hoon Kim;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.120-121
    • /
    • 2023
  • Recently, there has been a continuous imbalance between the demand and supply in the shipping industry. Consequently, shipping companies are implementing blank sailing to adjust the supply of vessels and achieve a balance between demand and supply. Blank sailing can create negative ripple effects by delaying cargo transportation, so this study uses Poisson regression analysis,

  • PDF