• Title/Summary/Keyword: Poisson ratio

Search Result 547, Processing Time 0.023 seconds

State-based Peridynamic Modeling for Dynamic Fracture of Plane Stress (평면응력 문제의 상태 기반 페리다이나믹 동적파괴 해석 모델링)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.301-307
    • /
    • 2015
  • A bond-based peridynamic model has been shown to be capable of analyzing many of dynamic brittle fracture phenomena. However, there have been issued limitations on handling constitutive models of various materials. Especially, it assumes bonds act independently of each other, so that Poisson's ratio for 3D model is fixed as 1/4 as well as taking only account the bond stretching results in a volume change not a shear change. In this paper a state-based peridynamic model of dynamic brittle fracture is presented. The state-based peridynamic model is a generalized peridynamic model that is able to directly use a constitutive model from the standard theory. It permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. Thus, the volume and shear changes of the material can be reproduced by the state-based peridynamic theory. For a linearly elastic solid, a plane stress model is introduced and the damage model suitable for the state-based peridynamic model is discussed. Through a convergence study under decreasing the peridynamic nonlocal region($\delta$-convergence), the dynamic fracture model is verified. It is also shown that the state-based peridynamic model is reliable for modeling dynamic crack propagatoin.

Numerical Analysis of Laterally Displacing Abutment in High Landfill Slope (고성토사면에 시공된 교대의 측방유동에 대한 수치해석적 연구)

  • Park, Min-Cheol;Jang, Seo-Yong;Shin, Baek-Chul;Han, Heui-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.27-39
    • /
    • 2012
  • This research is to propose the reinforcing method and design code for the lateral behaviors of the abutment displacement induced from the rainfall infiltration on high landfill slope. First, to make the proper numerical analysis, in-situ soil (weathered granite soil) was taken, and the variance of strength parameters according to water content variance was examined by undrained direct shear test, furthermore, other soil parameters were calculated from the standard penetration test such as elastic modulus and Poisson's ratio etc,. Those parameters were used to calculate the lateral behavior of abutment by finite element method and the member force of pile in high landfill slope according to rainfall infiltration . From the results, the shoe displacement on abutment was calculated as 8.98cm, which is 3 times bigger than the allowable displacement, 3cm. To reinforce it, several reinforcing methods were selected and analyzed such as reinforced retaining wall, soil surcharge, pile reinforcing (5m enlargement, 3-line arrangement, 5m enlargement and 3-line arrangement). In case of 5m enlarged and 3-line arrangement piles, the lateral behavior of shoe showed lower value(2.26 cm) than allowable displacement.

Amplitude Variation Analysis for Deep Sea Seismic Data in the Ulleung Basin, East Sea (동해 울릉분지 심해 탄성파 탐사자료 진폭변화분석)

  • Cheong, Snons;Kim, Youngjun;Kim, Byungyup;Koo, NamHyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The amplitude variation with offset of seismic data can detect fluids in the sediment and resolve the petrophysical properties of hydrocarbons in the subsurface. We analyzed and described the amplitude variation in deep sea seismic data obtained from the Ulleung Basin, East Sea. By inspecting seismic CDP-offset and CDP-angle gathers which show a bright reflection event, we decided a target zone for amplitude variation analysis. From the seismic angle gather at the middle of Ulleung Basin, we recognized amplitude increase or decrease versus offset on the intercept-gradient curve. Using the product attribute and Poisson's ratio change attribute computed in terms of intercept with gradient, the top and the base of gas saturated sediments were described. The area of amplitude variation suggestive of the presence of gas saturated sediments is shown at the depth of 3 s traveltime. Anomalous features of seismic amplitude in the Ulleung Basin were classified by the crossplot of intercept and gradient. The background trend of crossplot between intercept and gradient shows an inverse proportional relation that is common for wet sediments. Anomalous amplitudes of Class III fall into the first and the third quadrants on crossplots. We inferred regional gas/water saturated area with the horizontal dimension of 150 m in the Ulleung Basin by cross-section with respect to cross-plot anomaly.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

Identification of Subsurface Discontinuities via Analyses of Borehole Synthetic Seismograms (시추공 합성탄성파 기록을 통한 지하 불연속 경계면의 파악)

  • Kim, Ji-Soo;Lee, Jae-Young;Seo, Yong-Seok;Ju, Hyeon-Tae
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • We integrated and correlated datasets from surface and subsurface geophysics, drilling cores, and engineering geology to identify geological interfaces and characterize the joints and fracture zones within the rock mass. The regional geometry of a geologically weak zone was investigated via a fence projection of electrical resistivity data and a borehole image-processing system. Subsurface discontinuities and intensive fracture zones within the rock mass are delineated by cross-hole seismic tomography and analyses of dip directions in rose diagrams. The dynamic elastic modulus is studied in terms of the P-wave velocity and Poisson's ratio. Subsurface discontinuities, which are conventionally identified using the N value and from core samples, can now be identified from anomalous reflection coefficients (i.e., acoustic impedance contrast) calculated using a pair of well logs, comprising seismic velocity from suspension-PS logging and density from logging. Intensive fracture zones identified in the synthetic seismogram are matched to core loss zones in the drilling core data and to a high concentration of joints in the borehole imaging system. The upper boundaries of fracture zones are correlated to strongly negative amplitude in the synthetic trace, which is constructed by convolution of the optimal Ricker wavelet with a reflection coefficient. The standard deviations of dynamic elastic moduli are higher for fracture zones than for acompact rock mass, due to the wide range of velocities resulting from the large numbers of joints and fractures within the zone.

Quantitative Evaluation for Effectiveness of Consolidation Treatment by using the Ethylsilicate for the Namsan Granite in Gyeongju (경주 남산 화강암을 대상으로 에틸실리케이트를 이용한 강화 처리에 대한 정량적 평가)

  • Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young;Kim, Sa-Dug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 2008
  • Stone cultural heritages in Korea are mostly situated out door without any notable protection thus there are severe damage from chemical and biological weathering. This in turn, causes deformation and structural damage. To counter act this problem and to increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiment done on this subject. This paper attempts quantitative evaluation of effectiveness of ethylsilicate based resin for Namsan granite in Gyeongju. When two different materials with different ethylsilicate concentration were compared, the result indicated decrease of absorption and porosity with increase of ultrasonic velocities, uniaxial compressive strength, elastic constant, tensile strength and Poisson's ratio. In addition, comparison of physical characteristic of the conservation material resulted favorably toward ones with higher concentration of ethylsilicate. This is due to the ethylsilicates characteristic to fill the internal pores of stone. There is discolouration of stone surface after treatment with conservation material. This was more prominent with the product of higher ethylsilicate concentration.

A Study of Joint System for Groundwater Pathway (지하수 유로 조사를 위한 절리계의 응용지질학적 분석)

  • 최병렬
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 1998
  • The study area, Beulgok-myon Nonsan-goon Chungcheongnan-do is consist of Changri slate(Och, okcheon system), lithic tuff(Kslt, kyoungsang system), granite (Kqb, kyoungsang system) and quartz porphyry(Kgf, kyoungsang system). More than 3000 joints were measured and classified by direction. Main dipdirection/dips of Kqb are 228~257/73~88, 010~150/70~85, Och are 134~164/40~90, 214~249/55~89, Kslt are 291~332/75~82, 235~241/73~71. But Kgf are not appeared distinct directions of joint. In field, p-wave velocities(Vp) are measured on the bed rock. Vp of Kgf are $5000m(240^{\circ})~2380(360^{\circ})m/s$, Kqb are $3846(210^{\circ})~1408(150^{\circ})m/s$, Kslt are $5000(360^{\circ})~2323(150^{\circ})m/s$ and Och are $6657(180^{\circ})~2000(030^{\circ})m/s$. Also P-wave velocities on specimen are measured. It is slightely higher than it's measured on the bed rock. For engineering properties of rock, we measured Poisson's ratio, rigidity, Young's modulus and bulk modulus by dynamic method.

  • PDF

Evaluating Shear Wave Velocity of Rock Specimen Through Compressional Wave Velocities Obtained from FFRC and Ultrasonic Velocity Methods (양단자유공진주 및 초음파속도법으로 획득한 압축파 속도를 이용한 암석시편의 전단파 속도 도출)

  • Bang, Eun Seok;Park, Sam Gyu;Kim, Dong Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.250-256
    • /
    • 2013
  • Using shear wave velocity is more reasonable to estimate strength and integrity of rock compared with using compressional wave. It is often ambiguous to pick the dominant frequency caused by torsional wave when evaluating $V_S$ of rock specimen from FFRC method. It is also sometimes ambiguous to pick the first arrival point of S wave compared with P wave in the signals acquired from ultrasonic velocity method. Otherwise, the procedure of evaluating $V_P$ using ultrasonic velocity method and $V_L$ using FFRC method is relatively stable. Through the relationship between elastic modulus, poisson's ratio and $V_S$ can be obtained from $V_P$, $V_L$. Applicability was checked using model specimens having different material property and length and rock specimens sampled in mine area, and usefulness of proposed procedure was verified.

Seismic Studies on Ground Motion using the Multicomponent Complex Trace Analysis Method (다성분 복소 트레이스 분석법을 이용한 지진파 입자운동 연구)

  • Lee, So-Young;Kim, Ki-Young;Kim, Han-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In order to investigate in-line ground motions caused by earthquakes, we examine the multicomponent complex trace analysis method (MCTAM) for the synthetic data and apply it to real earthquake data. An experimental result for synthetic data gives correct information on the arrival times, duration of individual phases, and approaching angles for body waves. Rayleigh waves are also easily identified with the MCTAM. A deep earthquake with magnitude of 7.3 was chosen to test various polarization attributes of ground motions. For P waves, instantaneous phase difference between the vertical and the in-line horizontal components ${\phi}(t)$, instantaneous reciprocal ellipticity ${\rho}(t)$, and approaching angle ${\tau}(t)$ are computed to be ${\pm}180^{\circ},\;0{\sim}0.25,\;and\;-30^{\circ}{\sim}-45^{\circ}$, respectively. For S waves, ${\phi}(t)$ tends to vary while ${\rho}(t)$ have values of $0{\sim}0.3\;and\;{\tau}(t)$ remains near vertical, respectively. A relatively low frequency signal registered just prior to the S wave event is interpreted as a P-wave phase based on its polarization characteristics. Velocities of P and S waves are computed to be 8.633 km/s and 4.762 km/s, and their raypath parameters 0.074 s/km and 0.197 s/km. Dynamic Poisson's ratio is obtained as 0.281 from the velocities of P and S waves.

  • PDF

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.