• Title/Summary/Keyword: Poisson autoregressive model

Search Result 15, Processing Time 0.018 seconds

Coherent Forecasting in Binomial AR(p) Model

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 2010
  • This article concerns the forecasting in binomial AR(p) models which is proposed by Wei$\ss$ (2009b) for time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson innovations. Forecasts are produced by conditional median which gives 'coherent' forecasts, and we estimate the forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors are calculated by means of block of block bootstrap. The method is fitted to log data set used in Wei$\ss$ (2009b).

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

Analysis of Total Crime Count Data Based on Spatial Association Structure (공간적 연관구조를 고려한 총범죄 자료 분석)

  • Choi, Jung-Soon;Park, Man-Sik;Won, Yu-Bok;Kim, Hag-Yeol;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.335-344
    • /
    • 2010
  • Reliability of the estimation is usually damaged in the situation where a linear regression model without spatial dependencies is employed to the spatial data analysis. In this study, we considered the conditional autoregressive model in order to construct spatial association structures and estimate the parameters via the Bayesian approaches. Finally, we compared the performances of the models with spatial effects and the ones without spatial effects. We analyzed the yearly total crime count data measured from each of 25 districts in Seoul, South Korea in 2007.

High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea

  • Kim, Yun Jeong;Park, Man Sik;Lee, Eunil;Choi, Jae Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.361-367
    • /
    • 2016
  • We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in $R^2$ from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

Threshold-asymmetric volatility models for integer-valued time series

  • Kim, Deok Ryun;Yoon, Jae Eun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.295-304
    • /
    • 2019
  • This article deals with threshold-asymmetric volatility models for over-dispersed and zero-inflated time series of count data. We introduce various threshold integer-valued autoregressive conditional heteroscedasticity (ARCH) models as incorporating over-dispersion and zero-inflation via conditional Poisson and negative binomial distributions. EM-algorithm is used to estimate parameters. The cholera data from Kolkata in India from 2006 to 2011 is analyzed as a real application. In order to construct the threshold-variable, both local constant mean which is time-varying and grand mean are adopted. It is noted via a data application that threshold model as an asymmetric version is useful in modelling count time series volatility.