• Title/Summary/Keyword: Poisson′s ratio

Search Result 443, Processing Time 0.029 seconds

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model (입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가)

  • Park Eui-Seob;Ryu Chang-Ha;Bae Seong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF

Mechanical Properties of High Strength Polymer Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터 수지를 이용한 고강도 폴리머 콘크리트의 역학적 특성)

  • 연규석;김관호;이필호;김동수;박윤제
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.131-141
    • /
    • 1994
  • This study was carried out to develop a procedural method to produce high strength polymer concrete using unsaturated polyt.ster resin and to examine its mechanical properties. Various mechanical properties were analyzed with respect to materials and additives. A method to produce high strength polymer concrete was successfully developed. Comperssive strength of $1,291~1,445 kg/cm^2$, splitting tensile strength of $106~145 kg/cm^2$ and flexural strength of $182~235 kg/cm^2$, at age of 7days wer-e achieved from the cylinderical ;md beam specimen prepared with the method. Modulus of elasticity. Poisson's rntio and the ultirnate corn pressive strain of cylinderical specimen were $2.8~3.8{\times}10^5\;kg/cm^2$. 0.21~0.32, and 0.005~0. 0065, respectively. Modulus of elasticity of the polymer concrete was smaller than that of hlgh strength cement concrete while the maximum compressive strain was very larger than that of high strength cement concrete.

Mechanical Properties of Lightweight Foamed Concrete Using Polymer Foam Agent (고분자 기포제를 이용한 경량 기포 콘크리트의 역학적 특성 (II))

  • 박상순;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.173-181
    • /
    • 1997
  • The objective of this study is to obtain the mechanical characteristics of prefoarmed lightweight foamed concrete using the polymer ham agent which has high lightness. flowability and strength. For this purpose, the prefoarmed lightweight foamed concrete which was developed to have flow value over 180mm. unit weight between 0.38t/$m^3$ and 0.64t/$m^3$, and compressive strength about 30kg/$cm^2$ was used. This paper presents extensive test data on Young's modulus. Poisson's ratio, stress-strain curve, the characteristics of strength of the foamed concrete and also presents the mechanical characteristics of the foamed concrete with different foam sizes. It is expected that this study provides an importance guide to design and manufacture lightweight foam concrete, so that it helps to expand its structural use.

Prediction of Effective Properties of Laminated Plain Weave Textile Composites (적층각을 가지는 평직복합재료 적층판의 등가물성치 예측)

  • U,Gyeong-Sik;Seo,Yeong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.10-20
    • /
    • 2003
  • In this study, the effective properties were numerically calculated for laminated plain weave textile composites with arbitrary s tacking orientation angles. A single-field macroelement with modified sub-domain integration was used in the analysis to reduce computer resource requirement while efficiently accounting for the internal microstructure. A sample calculation procedure based on the Monte Carlo method was employed to consider the random shift between the layers. Results showed that a significant deviation occurred when the orientation angles were near 0 deg for extensional modulus and Poisson's ratio and 45 deg for the shear modulus. It was also found that the average properties calculated by the 2-layer numerical specimen had large differences compared to the CLT results, which indicated that a caution must be needed when designig of thin plain weave composite structures.

Sex Differences Associated With Hepatitis B Virus Surface Antigen Seropositivity Unwareness in Hepatitis B Virus Surface Antigen-positive Adults: 2007-2012 Korea National Health and Nutrition Examination Survey

  • Jang, Suk-Yong;Jang, Sung-In;Bae, Hong-Chul;Shin, Jaeyong;Park, Eun-Cheol
    • Journal of Preventive Medicine and Public Health
    • /
    • v.48 no.2
    • /
    • pp.74-83
    • /
    • 2015
  • Objectives: To examine the sex-specific factors associated with being unaware of one's hepatitis B virus surface antigen (HBsAg) seropositivity status in a large, HBsAg-positive population of Koreans. Methods: In total, 1197 subjects aged 19 years or older who were HBsAg-positive according to data from the 2007-2012 Korea National Health and Nutrition Examination Survey were included. Subjects were considered unaware of their HBsAg seropositivity status if they answered that they had no knowledge of being previously infected by the hepatitis B virus (HBV) or diagnosed with HBV hepatitis. Multivariate Poisson regression models with robust variance estimate were used to assess the significance of the variables using weighted frequencies. Results: The majority (77.8%) of HbsAg-positive Korean adults (females, 81.9%; males, 74.6%) were unaware of their HBsAg seropositivity status. We found that sex (female: prevalence ratio [PR] 1.19), household income (low: PR, 1.15), marital status (never married: PR, 1.18), self-rated health (moderate: PR, 1.14; good: PR, 1.12), and alcohol use (at least 2-3 times/wk: PR, 1.21) were associated with being unaware. In females, age (50 to 59 years: PR, 1.29; ${\geq}70$ years: PR, 1.30), household income (low: PR, 1.37; middle-low: PR, 1.24), and marital status (never married: PR, 1.33) were associated with being unaware. In males, self-rated health (moderate: PR, 1.14; good: PR, 1.21) and alcohol use (at least 2-3 times/wk: PR, 1.21) were associated with being unaware. Conclusions: Factors related to the socioeconomic status of females and the health-related behaviors of males were found to be associated with being unaware of one's HBsAg seropositivity status.

Determination of Deformation Modulus of Rock Mass with Measured Tunnel Displacement (측정된 터널변위에 의한 암반 변형계수의 결정)

  • Park, Jae-Woo;Park, Eun-Gyu;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.655-664
    • /
    • 2007
  • The major geotechnical parameters employed in tunnel design are deformation modulus, Poisson's ratio, friction angle, cohesion, etc. Among these parameters, the deformation modulus is the most significant parameter in tunnel deformation. However, determination of the modulus for rock mass by means of tests is very difficult due to factors affecting including discontinuities and sample size, etc. Thus input values used in the numerical analysis are generally determined by empirical method. A numerical analysis on tunnel was conducted with geotechnical parameters determined through the geological field mapping, laboratory tests, and evaluation of boring data, and some discrepancy between the computed result and tunnel displacements measured was found. Thus, further analyses by changing the deformation modulus of rock mass were performed to determine a relationship between the modulus and computed displacement. Data from two tunnel sites were used to verify the applicability of the proposed method and a correlative equation between deformation modulus and tunnel displacement is proposed. The deformation modulus of rock mass was around 30-40% of young's modulus of intact rock in these cases.

Acquisition and Processing of Shallow Vector Seismic Data (천부 탄성파 벡터자료 획득 및 분석)

  • Hong, Myung-Ho;Kim, Ki-Young;Hwang, Yoon-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • Acquisition and processing of vector seismic waves were conducted through simultaneous generation of P, SH, and SV waves and receiving those waves using three-component geophones. Test data were received by 24 8-Hz geophones at an interval of 2 m along a 94-m profile. The data were recorded for 512 ms with sampling intervals of 0.2 ms. Raw data indicate that both reflected and refracted P waves are strongly recorded on the vertical component while SH waves are significant on the transverse horizontal component. On the inline horizontal component, both direct P and converted PS waves are recorded. First arrivals of P and SH waves were detected simultaneously on the vertical and transverse horizontal axes, respectively. The recorded vector data were separately inverted using traveltime tomography to yield P- and SH-wave sections. Using those two velocity sections, Poisson's ratios were able to be obtained effectively.

  • PDF

Design Sensitivity and Reliability Analysis of Plates (판구조물의 설계감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.125-133
    • /
    • 1991
  • For the purpose of efficiently calculating the design sensitivity and the reliability for the complicated structures in which the structural responses or limit state functions are given by implicit form, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis method needed in the reliability-based design is proposed. As numerical examples, two thin plates are analyzed for the cases of plane stress and plate bending. The initial yielding is defined as failure criterion, and applied loads, yield stress, plate thickness, Young's modulus and Poisson's ratio are treated as random variables. It is found that the response variances and the failure probabilities calculated by the proposed PFEM-based reliability method show good agreement with those by Monte Carlo simulation. The probabilistic design sensitivity evaluates explicitly the contribution of each random variable to probability of failure. Further, the design change can be evaluated without any difficulty, and their effect on reliability can be estimated quickly with high accuracy.

  • PDF

Determination of Rock Abrasiveness using Cerchar Abrasiveness Test (세르샤 마모시험을 통한 암석의 마모도 측정에 관한 연구)

  • Lee, Su-Deuk;Jung, Ho-Young;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.284-295
    • /
    • 2012
  • Abrasiveness of rock plays an important role on the wear of rock cutting tools. In this study, Cerchar abrasiveness tests were carried out to assess the abrasiveness of 19 different Korean rocks. Cerchar abrasiveness test is widely used to assess the abrasiveness of rock because of its simplicity and inexpensive cost. This study examines the relationship between Cerchar Abrasiveness Index (CAI) and mechanical properties (uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio, porosity, shore hardness of rock), and the effect of quartz content, equivalent quartz content, which was obtained from XRD analysis. As a result of test, CAI was more influenced by petrographical properties than by the bonding strength of the matrix material of rock. CAI prediction model which consisted of UCS and EQC was proposed. CAI decreased linearly with the hardness of the steel pin. Numerical analysis was performed using Autodyn-3D for simulating the Cerchar abrasiveness test. In the simulations, most of pin wear occurred during the initial scratching distance, and CAI increased with the increase of normal loading.