• Title/Summary/Keyword: Poisson's equation

Search Result 230, Processing Time 0.028 seconds

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

A Study on the modelling of DI Switching Device by FEM (DI 스위칭 소자의 Turn on 특성에 관한 연구)

  • Lee, Kye-Hun;Kang, Ho-Cheol;Sung, Man-Young;Lee, Hyun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1253-1255
    • /
    • 1993
  • Double Injection(DI) switching devices consist of p+ and n+ contact separated by a nearly intrinsic semiconductor region containing deep trap. The FEM is chosen as a simulation method for DI switching device, because of the advantage in local mesh refinement and computer memory comparing with other methods. And Scharfetter-Gummel(S-G) scheme is applied, with which an accurate-seven point Gaussian Quadrature rule is combined. The existance of deed trap requires the modification of conventional equation set. So recombination rate equation is modified and a new equation is included in the equation set which conventionally consists of Poisson equation and current continuity equations.

  • PDF

Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods

  • Qu, Xiushu;Chen, Zhihua;Sun, Guojun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • Axial compression tests have been carried out on 18 rectangular concrete-filled cold-formed steel tubular (CFST) columns with the aim of investigating the axial behaviour of rectangular CFST columns under different loading methods (steel loaded-first and full-section loaded methods). The influence of different loading methods on the ultimate strength of the specimens was compared and the development of Poisson's Ratio as it responds to an increasing load was reported and analysed. Then, the relationship between the constraining factor and the strength index, and the relationship between the constraining factor and ductility index of the specimens, were both discussed. Furthermore, the test results of the full-section loaded specimens were compared with five international code predicted values, and an equation was derived to predict the axial carrying capacity for rectangular CFST columns with a steel loaded-first loading method.

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

EPBS를 이용한 이온채널 단백질의 전하분포와 유전율이 이온 선택성에 미치는 영향 계산

  • Choe, Hyeong-Su;Nam, Min-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.75-88
    • /
    • 2014
  • 본 연구에서는 비선형 Poisson-Boltzmann 식의 해를 구할 수 있는 웹 기반 EPBS를 이용하여 이온채널의 전하 분포와 유전률이 이온채널의 이온선택성에 미치는 영향에 대해 알아본다. 모델로 사용한 이온채널은 이온채널과 유사한 구조를 갖는 합성 단백질인 고리형 펩타이드 나노튜브와 자연계에 존재하는 Gramicidin A 이다. 계산 결과로부터 용매인 물과 단백질의 유전율 차이에 의해 이온이 이온채널을 통과할 때 반응장이 생성되며, 이는 이온과 상호작용을 통해 이온 종류에 관계없이 이온 통과를 방해하는 에너지 장벽을 형성함을 알 수 있다. 한편, 두 이온채널 부분 전하, 특히 골격에 존재하는 카르보닐기의 쌍극자 모멘트에 의해 이온채널 내부에는 0 보다 작은 정전기 퍼텐셜이 형성된다. 이온채널 내부의 총 정전기 퍼텐셜은 이온채널의 부분 전하에 의한 정전기 퍼텐셜과 유전률 차이에 의한 반응장의 합으로 나타나며, 계산 결과 0 보다 작은 값을 갖는다. 이로부터 본 연구에서 사용된 두 종류의 이온채널이 양이온에 선택성이 있음을 알 수 있다.

  • PDF

A Fast Poisson Solver of Second-Order Accuracy for Isolated Systems in Three-Dimensional Cartesian and Cylindrical Coordinates

  • Moon, Sanghyuk;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2019
  • We present an accurate and efficient method to calculate the gravitational potential of an isolated system in three-dimensional Cartesian and cylindrical coordinates subject to vacuum (open) boundary conditions. Our method consists of two parts: an interior solver and a boundary solver. The interior solver adopts an eigenfunction expansion method together with a tridiagonal matrix solver to solve the Poisson equation subject to the zero boundary condition. The boundary solver employs James's method to calculate the boundary potential due to the screening charges required to keep the zero boundary condition for the interior solver. A full computation of gravitational potential requires running the interior solver twice and the boundary solver once. We develop a method to compute the discrete Green's function in cylindrical coordinates, which is an integral part of the James algorithm to maintain second-order accuracy. We implement our method in the {\tt Athena++} magnetohydrodynamics code, and perform various tests to check that our solver is second-order accurate and exhibits good parallel performance.

  • PDF

An Analytical Model for the Derivation of the Ⅰ-Ⅴ Characteristics of a Short Channel InAlAs/InGaAs HEMT by Solving Two-Dimensional Poisson's Equation (2차원 Poisson방정식 풀이에 의한 단 채널 InAlAs/InGaAs HEMT의 전류-전압 특성 도출에 관한 해석적 모델)

  • Oh, Young-Hae;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.21-28
    • /
    • 2007
  • In this paper, in order to derive the two-dimensional field effect of n-InAlAs/InGaAs HEMTs, we suggested analytical model by solving the two-dimensional Poisson's equation in both InAlAs and InGaAs regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing within the quantum well shaped channel. Derived expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the threshold voltage decreases as drain voltage increases. Compared with the conventional model, the present model may offer more reasonable explanation for the drain-induced threshold voltage roll-off, the Early effect, and the channel length modulation effect. Furthermore, it is expected that the proposed model would provide more reasonable theoretical basis for analyzing various long and short channel InAlAs/InGaAs HEMT devices.

Performance Characteristics of Tubular Linear Iduction Motor (동기형 직선유도전동기의 동작특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • The purpose of this paper is to analysis and develop theoretically the characteristics of tubular linear induction motor, which is a special industrial motor that generates directly thrust force from electrical power. The Poisson equation about vector potential which is created by the application of Maxwell electromagnetic equation with the speed considered, results in modified Bessel equation by the assumption that is applied to each region of the experimental motor. Vector potential, magnetic flux density, secondary current, and thrust force according to its region respectively were found out by substituting boundary condition for this equation and rearranging. Besides, a attendant materials, that is, thermal characteristic, which is one of the characteristics under the operation of experimental motor each part's magnetic flux distribution characteristics within active zone, the required time for reciprocating motion, and variation of power factor vs. a slip were found.

  • PDF

Analysis of Subthreshold Current Deviation for Channel Doping of Double Gate MOSFET (이중게이트 MOSFET의 채널도핑에 다른 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1409-1413
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for channel doping concentration of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for channel doping concentration, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. As a result, we know the subthreshold current was influenced on parameters of Gaussian function and channel doping concentration for DGMOSFET.