• Title/Summary/Keyword: Pointing error

Search Result 75, Processing Time 0.037 seconds

An Adaptive Pointing and Correction Algorithm Using the Genetic Algorithm (유전자 알고리즘을 이용한 적응적 포인팅 및 보정 알고리즘)

  • Jo, Jung-Jae;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • In this paper, we propose the pointing and correction algorithm for optimized performance based on Bluetooth communication. The error from the accelerometer sensor's output must be carefully managed as the accelerometer sensor is more sensitive to data change compared to that of the gyroscope sensor. Thus, we minimize the noise by applying the Kalman filter to data for each axis from the accelerometer. In addition, we can also obtain effect compensating the hand tremor by applying the Kalman filter to the data variation for x and y. In this study, we extract data through the Quaternion mapping process on data from the accelerometer and gyroscope. In turn, we can obtain a tilt compensation by applying a compensation algorithm with acceleration of the gravity of the extracted data. Moreover, in order to correct the inaccuracy on smart sensor due to the rapid movement of a device, we propose a adaptive pointing and correction algorithm using the genetic approach to generate the initial population depending on the user.

A Study on the Validation of Tracking Performance of a Big Parabola Antenna System (대형 접시형 안테나 추적성능 검증에 관한 연구)

  • Oh, Chang-Yul;Oh, Seung-Hyeub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.77-82
    • /
    • 2010
  • The tracking performance of the big tracking antenna system using Radio Frequency is very important for the tracking and position measuring for the flight vehicle, but the precise measuring of the tracking performance is not easy, especially for the big antenna system such as ground telemetry antenna or tracking radar in space application because it's characteristics could be different in accordance with the antenna direction. In this paper, the error factors impacting on the tracking performance (pointing accuracy and tracking accuracy) and the ranges of each factor are reviewed, and the simple and efficient method to measure the tracking performance is introduced which using low earth orbit as the signal source. Finally, the measurement results for the telemetry ground antenna in NARO Space Center are reviewed.

Efficient Satellite Solar Array Drive Assembly Operation to Compensate Equation of Time (균시차 보상을 위한 효율적인 위성 태양전지판구동기 운용)

  • Park, Keun Joo;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.890-896
    • /
    • 2019
  • Due to the eccentricity of the Earth's orbit around the Sun and the obliquity of the Earth rotation axis against ecliptic frame, the apparent solar time differs from the mean solar time. Since the solar array of a GEO satellite makes a turn in mean solar day, the Sun pointing error of solar array is introduced over the year due to the equation of time. In this paper, efficient methods of compensating the equation of time to keep the solar array pointing the Sun are presented and verified with realistic simulation.

Prediction of the Equivalent Coefficient of Thermal Expansion of Fiber Reinforced Plastic Lamina and Thermal Pointing Error Analysis of Satellites (섬유강화 복합재료 등가열팽창계수 예측 및 인공위성 열지향오차 해석)

  • You, Won Young;Lim, Jae Hyuk;Kim, Sun Won;Kim, Chang-Ho;Kim, Sung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.76-85
    • /
    • 2014
  • In this paper, the equivalent coefficient of thermal expansion (CTE) of fiber reinforced plastic composite material is investigated with various CTE prediction schemes. Although there are several methods for predicting the equivalent CTEs, most of them have some limitations of are not much accurate when comparing prediction results with test results. In the framework of computational homogenization, a representative volume element is taken from the predefined fiber-volume ratio, and modelled with finite element mesh. Finally, the equivalent CTEs are obtained by applying periodic boundary condition. To verify the performance of the proposed method, the results obtained are compared with those by the existing methods and test results. Additionally, the thermal pointing error analysis for star tracker support structure is conducted and its accuracy is estimated according to CTE prediction schemes.

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV) (6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석)

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

A Study on Satellite Alignment Measurements Accuracy Improvement (인공위성 정렬 측정 정확도 향상을 위한 연구)

  • Choi, Jung Su;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.987-995
    • /
    • 2020
  • Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.

Attitude determination for three-axis stabilized satellite

  • Kim, Jinho;Lew, Changmo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.110-114
    • /
    • 1995
  • This paper presents the on-board attitude determination algorithm for LEO (Low Earth Orbit) three-axis stabilized spacecraft. Two advanced star trackers and a three-axis Inertial Reference Unit (IRU) are assumed to be attitude sensors. The gyro in the IRU provides a direct measurement of the attitude rates. However, the attitude estimation error increases with time due to the gyro drift and noise. An update filter with measurements of star trackers and/or sun sensor is designed to update these gyro drift bias and to compensate the attitude error. Kalman Filter is adapted for the on-board update filter algorithm. Simulation results will be presented to investigate the attitude pointing performance.

  • PDF

OPERATIONAL ORBIT DETERMINATION USING GPS NAVIGATION DATA

  • Hwang Yoola;Lee Byoung-Sun;Kim Jaehoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.376-379
    • /
    • 2004
  • Operational orbit determination (OOD) depends on the capability of generating accurate prediction of spacecraft ephemeris in a short period. The predicted ephemeris is used in the operations such as instrument pointing and orbit maneuvers. In this study the orbit prediction problem consists of the estimating diverse arc length orbit using GPS navigation data, the predicted orbit for the next 48 hours, and the fitted 30-hour arc length orbits of double differenced GPS measurements for the predicted 48-hour period. For 24-hour orbit arc length, the predicted orbit difference from truth orbit was 205 meters due to the along-track error. The main error sources for the orbit prediction of the Low Earth Orbiter (LEO) satellite are solar pressure and atmosphere density.

  • PDF

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

Human's Spatial Cognition Using Auditory Stimulation

  • Yu, M.;Park, Y.G.;Jeong, S.H.;Chong, W.S.;Kwon, T.K.;Hong, C.U.;Kim, N.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.202-205
    • /
    • 2004
  • This paper represents the role of pinna in localizing target direction. Specially, this paper described what is the role of right-side pinna versus left-side pinna. In this experiment, one side of the pinna function was distorted intentionally by inserting a short tube on the ear canal. The localization error caused by right and left side pinna distortion was investigated. Since a laser pointer showed much less error (0.5%) in localizing target position than FASTRAK (30%) that has been generally used, it was used for the pointing task. It was found that harmonic components were not essential for the auditory target localization, however, non-harmonic nearby frequency components were more important to localize target direction of sound. We have found that the right pinna is one of the most important functions in localizing target direction and pure tone with only one frequency component is confusing for localization.

  • PDF