Point-of-Interest(POI) recommendation systems suggest the most interesting POIs to users considering the current location and time. With the rapid development of smartphones, internet-of-things, and location-based social networks, it has become feasible to accumulate huge amounts of user POI visits. Therefore, instant recommendation of interesting POIs at a given time is being widely recognized as important. To increase the performance of POI recommendation systems, several studies extracting users' POI sequential preference from POI check-in data, which is intended for implicit feedback, have been suggested. However, when constructing a model utilizing sequential preference, the model encounters possibility of data distortion because of a low number of observed check-ins which is attributed to intensified data sparsity. This paper suggests refinement of temporal intervals based on data confidence. When building a POI recommendation system using temporal intervals to model the POI sequential preference of users, our methodology reduces potential data distortion in the dataset and thus increases the performance of the recommendation system. We verify our model's effectiveness through the evaluation with the Foursquare and Gowalla dataset.
Proceedings of the Korea Contents Association Conference
/
2006.11a
/
pp.725-728
/
2006
Recently, It is gradually increasing about need of various information service based of Location that in compliance with rapidly development wireless internet terminal using the real-time location information at mobile environment. But existing information depends service provision method to information provider. so It is many insufficient tailorable information provision about user individuals each other propensity. For this, It need Service skill to provide easily information about tailorable POI(Point Of Interest) of user preference using information based of Location in mobile computing environment. Therefore In this paper, It is use information service based of location in mobile environment. So It analyzes POI information in compliance with propensity of user and It proposes to provide information about service model. It provides to follow individuals propensity analysis POI information service based of location in proposed model. so It provides actively more value information to user.
Park, So-Hyun;Park, Young-Ho;Park, Eun-Young;Ihm, Sun-Young
Journal of Digital Contents Society
/
v.19
no.5
/
pp.871-880
/
2018
Recently, the technology of recommendation of POI (Point of Interest) related technology is getting attention with the increase of big data related to consumers. Previous studies on POI recommendation systems have been limited to specific data sets. The problem is that if the study is carried out with this particular dataset, it may be suitable for the particular dataset. Therefore, this study analyzes the similarity and correlation between stores using the user visit data obtained from the integrated sensor installed in Seoul and Songjeong roads. Based on the results of the analysis, we study the preference prediction system which recommends the stores that new users are interested in. As a result of the experiment, various similarity and correlation analysis were carried out to obtain a list of relevant stores and a list of stores with low relevance. In addition, we performed a comparative experiment on the preference prediction accuracy under various conditions. As a result, it was confirmed that the jacquard similarity based item collaboration filtering method has higher accuracy than other methods.
Park, Chun Geol;Kim, Jeong Joon;Park, Ji Woong;Han, Ki Joon
Spatial Information Research
/
v.21
no.4
/
pp.7-14
/
2013
Recently, R&D(Research and Development) is processing actively on range search in the road network environments. However, the existing representative range search techniques have shortcomings in that the greater the number of POI's, the more increased storage space or the more increased search time due to inefficient search process. Accordingly, In this paper, we proposed a range search technique using QRMP(QR-tree using Middle Point) to solve the problems of conventional range search techniques. In addition, we made a formula to obtain the total size of the storage space for QRMP and proved the excellence of the range search technique proposed in this paper through the experiment using actual road networks and POI data.
Point of interest (POI) of the city is a special place that has what importance to the user. For example, it is such landmark, restaurants, museums, hotels, and theaters. Because of its role in the social and economic life of us, these have attracted a lot of interest in location-based applications such as social networks and online map. However, while it can easily be obtained through the Web, the basic information of POI such as geographic location, another effort is required to obtain detailed information such as Wi-Fi, accepting credit cards, opening hours, romper room and the assessment and evaluation of other users. To solve these problems, a new method for correcting position error is required to link location-based social network service (LBSNS) data and POIs. This paper attempts to propose a position error correction method of POI and LBSNS data to enrich POI information from the vast information that is accumulated in LBSNS. Through this study, we can overcome the limitation of individual POI information via the information fusion method of LBSNS and POI, and we have discovered the possibility to be able to provide additional information which users need. As a result, we expect to be able to collect a variety of POI information quickly.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.36-38
/
2012
최근 사용자들의 궤적 분석을 통해 사용자의 성향에 적합한 정보를 추천해주는 연구들이 진행되고 있다. 이러한 연구들은 여행지 추천, 친구 추천 등과 같은 응용 서비스를 위해서 클러스터링 기법과 패턴 매칭 기법을 많이 사용하고 있다. 그러나 클러스터링 기법은 추천 받는 사용자의 선호도가 반영되지 않고, 다른 사용자들의 선호도에 따라 추천을 해주는 단점이 존재한다. 또한, 패턴 매칭 기법은 다른 사용자와의 POI(Point of Interest)의 유형과 거리를 비교하여 추천을 수행하기 때문에 사용자의 세부적인 선호도를 반영할 수 없는 단점이 존재한다. 이러한 기존 연구들을 보완하기 위해 본 논문에서는 POI의 속성 정보와 사용자의 이동 패턴을 고려한 POI을 추천 기법을 제안한다. 제안하는 기법은 크게 사용자의 속성 정보를 이용해서 선호도를 계산하고 선호도가 다른 궤적을 필터링하는 부분과 패턴 매칭 기법을 사용하여 근접한 궤적을 찾는 부분으로 구성된다. 제안하는 기법의 우수성을 입증하기 위해서 추천된 POI 궤적과 사용자 POI 궤적을 비교하여 두 궤적의 이동 패턴이 유사함을 확인하였다.
Since users who search maps conduct their searching using the name they already know or is commonly called rather than formal name of a specific place, they tend to fail to find their destination. In addition, in typical web map service in terms of spatial searching of map. Location information of unintended place can be provided because when spatial searching is conducted with the vocabulary 'nearby' and 'in the vicinity', location exceeding 2 km from the current location is searched altogether as well. In this research, spatial range that human can perceive is calculated by extracting POI date with the usage of twitter data of SNS, constructing spatial relations with existing POI, which is already constructed. As a result, various place names acquired could be utilized as different names of existing POI data and it is expected that new POI data would contribute to select places for constructing POI data by utilizing to recognize places having lots of POI variation. Besides, we also expect efficient spatial searching be conducted using diverse spatial vocabulary which can be used in spatial searching and spatial range that human can perceive.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.5
/
pp.467-476
/
2020
Indoor space has been one of the focal points for geospatial research as various factors such as increasing demands for application and demand for adaptive response in emergencies have arisen. IndoorGML (Indoor Geography Markup Language) has provided a standardized method of representing the topological aspect of micro-scale environments, with its extensive specifications and flexible applicability. However, as more real-world problems and needs demand attention, suggestions to improve this standard, such as representing IndoorPOI (Indoor Points of Interest), have arisen. Hence, existing algorithms and functionalities that we use on perceiving these indoor spaces must also adapt to accommodate said improvements. In this study, we explore how to define spatial neighborhoods in indoor spaces represented by an integrated IndoorGML and IndoorPOI data. We revisit existing approaches to combine the aforementioned datasets and refine previous approaches to perform neighborhood spatial queries in 3D. We implement the proposed algorithm in three use cases using sample datasets representing a real-world structure to demonstrate its effectiveness for performing indoor spatial analysis.
Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.399-401
/
2022
POI (Point-of-Interest) 추천은 다양한 위치 기반 서비스에서 중요한 역할을 있다. 기존 연구에서는 사용자의 모바일 선호도를 모델링하기 위해 과거의 체크인의 공간-시간적 관계를 추출한다. 그러나 사용자 궤적에 숨겨진 개인 방문 경향을 반영할 수 있는 structured feature 는 잘 활용되지 않는다. 이 논문에서는 궤적 그래프를 결합한 시공간 인식 attention 네트워크를 제안한다. 개인의 선호도가 시간이 지남에 따라 변할 수 있다는 점을 고려하면 Dynamic GCN (Graph Convolution Network) 모듈은 POI 들의 공간적 상관관계를 동적으로 집계할 수 있다. LBSN (Location-Based Social Networks) 데이터 세트에서 검증된 새 모델은 기존 모델보다 약 9.0% 성능이 뛰어나다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.