• Title/Summary/Keyword: Point-extraction

Search Result 929, Processing Time 0.032 seconds

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Validation of three-dimensional digital model superimpositions based on palatal structures in patients with maximum anterior tooth retraction following premolar extraction

  • Liu, Jing;Koh, Kyong-Min;Choi, Sung-Hwan;Kim, Ji-Hoi;Cha, Jung-Yul
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.258-267
    • /
    • 2022
  • Objective: This study aimed to evaluate the superimposition accuracy of digital modes for measuring tooth movement in patients requiring anterior retraction after premolar extraction based on the proposed reference regions. Methods: Forty patients treated with bilateral maxillary first premolar extraction were divided into two groups: moderate retraction (< 7.0 mm) and maximum retraction (≥ 7.0 mm). Central incisor displacement was measured using cephalometric superimpositions and three-dimensional (3D) digital superimpositions with the 3rd or 4th ruga as the reference point. The Wilcoxon signed-rank test and linear regression analyses were performed to test the significance of the differences and relationships between the two measurement techniques. Results: In the moderate retraction group, the central incisor anteroposterior displacement values did not differ significantly between 3D digital and cephalometric superimpositions. However, in the maximum-retraction group, significant differences were observed between the anteroposterior displacement evaluated by the 3rd ruga superimposition and cephalometric methods (p < 0.05). Conclusions: This study demonstrated that 3D digital superimpositions were clinically as reliable as cephalometric superimpositions in assessing tooth movements in patients requiring moderate retraction. However, the reference point should be carefully examined in patients who require maximum retraction.

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

A STUDY ON THE CHANCES OF THE SOFT TISSUE PROFILE FOLLOWING ORTHODONTIC TREATMENT BY DIGITAL SUBTRACTION METHOD (교정치료에 따른 측모 연조직의 변화에 관한 계수공제 영상측정법적 연구)

  • Cho, Won-Tak;Yu, Dong-Hwan
    • The korean journal of orthodontics
    • /
    • v.27 no.3 s.62
    • /
    • pp.411-420
    • /
    • 1997
  • The propose of this study was to quantify the changes of soft tissue profile following orthodontic treatment and to evaluate the relationship of those to the skeletal elements. Pre-and post-treatment lateral cephalometric head films of 40 cases(20 extraction cases, 20 non-extraction cases) were traced, and the changes following treatment were measured and quantified by digital subtraction method, and statisticall analyzed. The obtained results were as follows; 1. in extraction group, the change of upper lip area(UL) was $558.60\pm355.17$ pixels, that of lower lip area(LL) was $941.15\pm364.07$ pixels. But, in non-extraction group the change of uper lip area(UL) was $125.65\pm404.16$ pixels, that of lower lip area(LL) was $104.05\pm440.93$ pixels, which was significantly lesser than those in extraction group. 2. In extraction group, there was significant correlationship between upper lip area change(UL) and difference of upper incisor point(${\Delta}UIP$). Lower lip area change(LL) was significantly correlated with difference of upper incisor(${\Delta}UIP$), difference of Franlrfort upper incisor angle(${\Delta}FUIA$) or difference of interincisal angle(${\Delta}IIA$). 3. In extraction group, the ratio of difference of upper incisor point(${\Delta}UIP$) to difference of labrale superius(${\Delta}LSP$) was 1.68; difference of lower incisor point(${\Delta}LIP$) to difference of labrale inferius(${\Delta}LI$) was 1.19; difference of upper incisor point(${\Delta}UIP$) to increment in upper lip thickness(${\Delta}TUL$) was 1.95. 4. In non-extraction group, there was a significant correlationship between upper lip area change(UL) and difference of upper incisor point(${\Delta}UIP$).

  • PDF

Determination of Aroma Components in Pinus densiflora (Pine Needles) Studied by Using Different Extraction Methods (추출방법에 따른 솔잎의 휘발성 성분 조성 비교)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Kwon Young-Ju;Jang Hee-Jin;Kwag Jae-Jin;Rhee Moon-Soo;Lee Gae-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • The efficiency of six different extraction methods for the analysis of aroma components from pine needle(P. densiflora) was compared by gas chromatography-mass selective detector(GC-MSD). The six methods were dynamic headspace(DHS), reduced pressure headspace(RPHS), solid-phase microextraction(SPME), simultaneous distillation-extraction(SDE), supercritical fluid extraction(SFE) and pyrolysis distillation extraction(PDE). A total of 65 compounds were identified by using the six different extraction methods. These compounds are classified into six categories in terms of chemical functionality: 25 hydrocarbons, 16 alcohols, 9 carbonyls, 6 esters, 7 acids, and 2 ethers. The aroma compounds having low boiling point were more abundant in DHS, RPHS, and SPME extracts. On the other hand, the aroma compounds having high boiling point were more abundants in SDE, SFE and PDE extracts. The acid compounds were extracted by heat-based extraction methods such as SDE, SFE, PDE, but not by DHS, RPHS and SPME, which used neither solvent nor heat. The oxygenated terpens, hexanal, hexanol, and hexadienal were more abundant in DHS and RPHS extracts, compared with the other methods.

Three‐Dimensional Automatic Measurement Extraction Algorithms for Neck‐base Part of Females in Their Twenties (20대 여성의 목밑둘레 부위에 대한 3차원 자동 측정 알고리즘)

  • Hwang, Keun-Young;Nam, Yun-Ja;Park, Jae-Kyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • The purpose of this study is to suggest computer assisted neck-base's landmark identification algorithms and measurement extraction methods from three-dimensional human scan data. So we developed the algorithms for automatic identification of landmarks related to the neck-base types. The subjects were 58 women $18{\sim}24$ years of age. Their body were measured directly and indirectly by using camera and three-dimensional body scanner. They were measured during the months of October in 2001. Based on the characters of classified neck-base types, algorithms for the automatic identification of landmarks and methods of automatic measurement are developed. The three-dimensional automatic measuring program is made by $C^{++}$ language. Using this program, 4 landmarks are identified and 6 items are measured. In the verifying the precision of automatic measurement, the height measurements(cervicale, side neck point, front neck point) were relatively accurate, but neck-base width measurement was measured wide.

3D image processing using laser slit beam and CCD camera (레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF