• Title/Summary/Keyword: Point trajectory

Search Result 459, Processing Time 0.022 seconds

Development of a Practical Algorithm for en-route distance calculation (항로거리 산출을 위한 실용 알고리즘 개발)

  • GeonHwan Park;HyeJin Hong;JaeWoo Park;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.434-440
    • /
    • 2022
  • The ICAO (International civil aviation organization)recommended the implementation of the GANP (global air navigation plan) for strategic decision-making and air traffic management evaluation. In this study, we proposed a new method for finding the route distance from KPI (key performance indicator) 05 actual route extension presented for air traffic management evaluation. For this purpose, we collected trajectory data for one month and calculated the en-route distances using the methods presented in ICAO and the methods presented by this author. In the ICAO method, the intersection point must be estimated through the equation of a circle for radius 40 NM and the equation of a straight line for an inner and outer point close to a circle in the track data, and four flight distances are calculated to calculate the en-route distance. In the method presented in this study, two flight distances are calculated without estimating the intersection point to calculate the en-route distance. To determine the error between the two methods, we used the performance evaluation index RMSE (root mean square error) and the determination factor R2 of the regression model.

Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors (3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정)

  • Kim, Se-Young;Chun, Seung-Yong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • In this paper, we propose a moving target localization algorithm using acoustic spectrograms. A time-versus-frequency spectrogram provide a information of trajectory of the moving target in underwater. For a source at sufficiently long range from a receiver, broadband striation patterns seen in spectrogram represents the mutual interference between modes which reflected by surface and bottom. The slope of the maximum intensity striation is influenced by waveguide invariant parameter ${\beta}$ and distance between target and sensor. When more than two sensors are applied to measure the moving ship-radited noise, the slope and frequency of the maximum intensity striation are depend on distance between target and receiver. We assumed two sensors to fixed point then form a circle of apollonios which set of all points whose distances from two fixed points are in a constant ratio. In case of three sensors are applied, two circle form an intersection point so coordinates of this point can be estimated as a position of target. To evaluates a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program.

Modification of the Existing Binders for Highly-Shattering, Short-Stem Rice Varieties (II) (탈립성(脱粒性), 단간종(短稈種)인 통일계품종(統一系品種)에 적합(適合)한 바인더의 개량(改良) 개발(開発)에 관(関)한 연구(硏究) (II))

  • Chung, C.J.;Choi, H.S.;Ryu, K.H.;Koh, H.K.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.18-25
    • /
    • 1983
  • The binders introduced in Korea were originally designed to be used for Japonica varieties which have realtively long stem and are highly resistant to shattering. In order to use it for Tongil varieties which are short and easy to be shattered, mechanical modifications are necessary to reduce a grain loss incurred during its operation. This study was intended to investigate the binding unit, one of the major factors affecting grain losses. The binding parts of three binders used in Korea were analyzed and the grain loss was experimentally assessed for these binders. The results obtained from this study are summarized as follows: 1. From the motion analysis of discharge mechanism, the trajectory of the discharge arm appeared to be either circular or skewed elliptic. The velocity of a circular path mechanism was constant and smaller than that of a skewed elliptic path mechanism. The discharge grain loss of the former was about twice less than that of the latter. 2. It was found that the grain loss incurred due to the collision of the paddy bundles and ground was considerably high for Tongil varieties. The auxiliary discharge bar gave a significant influence on the motion and posture of the bundles, and the degree of impact on ground. 3. The installation of an auxiliary bar, which guides the paddy bundles smoothly to ground in order to reduce impact when the bundles fall down on ground, appeared to be very effective since the grain losses could be decreased by about 1.6 percentage point. However, the guide bar should be installed after some mechanical modification to reduce the velocity of discharge arm has been made.

  • PDF

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Analysis on Vulnerability of Password Entry Using Virtual Onscreen Keyboard (가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석)

  • Shakirov, Bobur;Kim, Hyejin;Lee, KyungHee;Nyang, DaeHun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.857-869
    • /
    • 2016
  • It is a well-known fact that password based authentication system has been threatened for crucial data leakage through monitoring key log. Recently, to prevent this type of attack using keystroke logging, virtual onscreen keyboards are widely used as one of the solutions. The virtual keyboards, however, also have some crucial vulnerabilities and the major weak point is that important information, such as password, can be exposed by tracking the trajectory of the mouse cursor. Thus, in this paper, we discuss the vulnerabilities of the onscreen keyboard, and present hypothetical attack scenario and a method to crack passwords. Finally to evaluate the performance of the proposed scheme, we demonstrate an example experiment which includes attacking and cracking by utilizing password dictionary and analyze the result.

Estimation of Retained Rate in Open-water Sediment Disposal (개방수역 퇴적물 처리에서 유보율의 평가)

  • Shin, Hosung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.49-60
    • /
    • 2015
  • Open-water sediment disposal has many applications in costal construction. Dumping of sediment in open water can be divided into descending stage under water and sedimentation stage on the seabed, and retained rate is evaluated from analyzed results of these two successive stages. Descending particle cloud have two distinct thermal and swam phase, and trajectory equations for each phase are derived to describe settling velocity and radius of particle cloud. For sedimentation stage, a numerical simulator is used to calculate growth factors for particle fiction angle and current velocity. Retained rate is defined as a mass rate of remained sediment inside the circle which has a center at dumping point on the sea level and user-defined effective radius. Retained rate map for Singapore coast is presented with water depth of 20 m, current velocity of 0.0~1.5 m/s, and effective radius of 5 m. It will decrease sediment mass loss during disposal operation and minimize surrounding environmental pollution.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part I. Optimal Control Formulation and Numerical Methods (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part I. 최적제어 문제의 정식화와 수치해법)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using the multiple-shooting method. This paper focuses on the effect of the number of shooting nodes and initialization methods on the numerical solution in order to define the minimum number of shooting nodes required for numerical convergence and to provide a method increasing convergence radius of the indirect method. The results of this study can provide an approach to improve numerical stability and convergence of the indirect method when we solve the optimal control problems of an inherently unstable helicopter system.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.