• Title/Summary/Keyword: Point of inflection

Search Result 214, Processing Time 0.026 seconds

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

The Influence of Initial Overloads on the Fatigue Life of Spot-welded Tensile-shear Specimens (初期 過荷重이 點熔接 引張剪斷 試驗片의 疲勞擧動에 미치는 影響)

  • 강성수;정원욱
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 1995
  • The factors affecting on the fatigue strength of spot_welded specimens have been studied. The influence of initial overloads on the fatigue life of spot_welded tensile_shear specimens is investigated by considering fatigue crack initiation and crack propagation. The change of strain range and the influence of initial overload are correlated on the basis ol strain results. The results of this study are as follows. l) The initial absolute strain range decreased with initial overloads increase, and absolute strain range decreased before transformation of waveform of strain, but increased after transformation of waveform of strain. 2) In case of subsequent point of inflection of offset strain, the increment of this strain decreased with initial overload increase. 3) As initial overloads increase, the deformation behavior of spot welded parts is restricted after overloading.

  • PDF

Accuracy Improvement for Measurement of Heat of Fusion by T-history Method (T-history법에 의한 잠열량 측정 정확도의 향상)

  • 박창현;백종현;강채동;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.652-660
    • /
    • 2003
  • T-history method, measuring heat-of-fusion of phase change material (PCM) in sealed tubes, has the advantages of a simple experimental device and no requirements in sampling process. However, a degree of supercooling used in selecting the range of latent heat release and neglecting sensible heat during the phase change process can cause significant errors in determining the heat of fusion in the original method, which has been improved in order to predict better results by us. In the present study, the modified method was applied to a variety of PCM such as paraffin and lauric acid having very small or no supercooling with a satisfactory precision. Also the selection of inflection point and temperature measurement position was fumed out not to affect the accuracy of heat-of-fusion significantly. As a result, the method can provide an appropriate means to assess a new developed PCM by cycle test even if a very accurate value cannot be obtained.

Inelastic lateral-torsional buckling strengths of stepped I-beams subjected to general loading condition

  • Park, Jong Sup;Park, Yi Seul
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.275-289
    • /
    • 2013
  • The cross sections of multi-span beams are sometimes suddenly increased at the interior support of continuous beams to resist high negative moment. An earlier study on elastic lateral torsional buckling of stepped beams was conducted to propose new design equations. This research aims to continue the earlier study by considering the effect of inelastic buckling of stepped beams subjected to pure bending and general loading condition. A three-dimensional finite element-program ABAQUS and a statistical program MINITAB were used in the development of new design equations. The inelastic lateral torsional buckling strengths of 36 and 27 models for singly and doubly stepped beams, respectively, were investigated. The general loading condition consists of 15 loading cases based on the number of inflection point within the unbraced length of the stepped beams. The combined effects of residual stresses and geometrical imperfection were also considered to evaluate the inelastic buckling strengths. The proposed equations in this study will definitely improve current design methods for the inelastic lateral-torsional buckling of stepped beams and will increase efficiency in building and bridge design.

Estimation of the critical current of CORC® conductor using the measured magnetization losses

  • Jinwoo, Han;Ji-Kwang, Lee;Kyeongdal, Choi;Woo-Seok, Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.46-49
    • /
    • 2022
  • Since CORC®(Conductor on Round Core) is made of multiple strands of a superconducting tape to conduct a large current, it is difficult to measure the critical current due to the limitation of a capacity of a power supply. The magnetization loss of a superconductor is dependent on the full penetration field. The full penetration field corresponds to the inflection point of the magnetization loss graph with respect to the external magnetic field. We propose a method to predict the critical current of CORC® indirectly. This method uses the measured magnetization losses of various CORC® samples for the prediction of the critical currents.

Development of New Freeway Capacity Estimation Method (고속도로의 용량산정 방법론 개발에 관한 연구)

  • Kim, Young Sun;Lee, Sang Soo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.123-133
    • /
    • 2015
  • PURPOSES : This study aimed to develop a new highway capacity estimation method and provide comparative results among traditional capacity estimation methods and the recommended values in the latest version of KHCM. METHODS : The limitations of the existing methods, such as inconsistency and underestimation of the capacity value, are summarized through an extensive literature review. To overcome these limitations, a new method is introduced by adopting a definition of capacity and traffic flow characteristics at or near breakdown points. This method can produce the capacity value by searching a point corresponding to the maximum traffic flow through analysis of gradient changes (point of inflection) of the traffic flow and speed distribution. Comparative results of capacity values from each method are also presented to validate the new method by using data collected from detectors on freeways. RESULTS: From the analysis results, it is shown that a consistent capacity value can be estimated by applying the new method. In addition, the resulting capacity values are 3%-4% higher than those recommended in KHCM. CONCLUSIONS : The capacity values listed in the current KHCM tend to produce underestimated results. The new method presented in this paper may be included in the future edition of KHCM.

Studies on the Mathematical Analysis of Growth Kinetics in Tobacco (Nicotiana tabacum L. ) I. Growth Curve and Growth Velocity of Total Dry Weight. (담배의 생장반응에 관한 수리해석적 연구 I. 전건물중의 생장곡선과 생장속도)

  • 김용암;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 1981
  • This experiment was conducted with three varieties (Hicks, Burley 21, Sohyang) and cropping systems (Improved mulching, Mulching, Non mulching) of NC 2326 to analyze growth kinetics by means of growth function involving its velocity and accelerated velocity. The basic growth data were obtained by harvest method at interval of ten days from transplanting to hundred days and analyzed by , regression equation, determinant of matrix, and differentiation. The plot of total dry weight of leaves, stalk and roots per a plant vs. time forms a sigmoid curve and its function fitted logistic satisfactorily. Tobacco plant grows at an accelerated velocity. And growth velocity, symmetric about an inflection point, is proportional to biomass attained and to the difference between biomass attained and the maximum, and to the decrease according to the biomass. Of varieties and cropping systems, the most maximum velocity was 9.58g per day per plant in mulching cultivation of NC 2326 and maximum accelerated velocity was 264mg per $day^2$ per plant in Burley 21.

  • PDF

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

Characteristics of the Momentum Equation in Open Channel Flow (개수로흐름 해석에서 운동량방정식의 특성)

  • Jeon, Min-Woo;Cho, Yong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1111-1115
    • /
    • 2008
  • The relative magnitudes of the individual terms of the momentum equation are analyzed and compared by the analytical methods in open channel flow. The temporal variations of each term(local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) are analyzed for the influence factors to runoff expressed by the parameters of the momentum equation, stream slopes and roughness coefficients. The magnitudes of each term vary with the channel characteristics, especially when the roughness coefficients are dominant or for the mild stream slopes the pressure term can not be negligible. As a result of the characteristics of momentum equation in open channel flow, the acceleration terms are very small compared with the other terms. The magnitudes of local acceleration and convective acceleration offsets each other. The peak time of each term except the gravity term coincides with inflection point of the hydrograph rising limb each other.

  • PDF

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF