• 제목/요약/키워드: Point of common coupling

검색결과 116건 처리시간 0.022초

Economic Considerations Underlying the Adoption of HVDC and HVAC for the Connection of an Offshore Wind Farm in Korea

  • Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.157-162
    • /
    • 2012
  • Wind energy is created in mega-sized wind farms situated kilometers off shore. In fact, two possibilities are considered for the transmission system between the offshore wind farm and the onshore grid: high-voltage direct current and high-voltage alternating current. From this point of view, the current paper aims to compare both systems for a 2 GW wind farm situated 80 km from the Point of Common Coupling on an economic basis using a discounted cash flow analysis. A tool is developed in Microsoft Excel to allow for quick insight in the variation of input parameters.

전철 급전계통의 고조파 실측 및 해석결과 비교검증 (Harmonics Analysis in eletric railroad feed system)

  • 최흥관;윤재영;이종우;오광해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.149-151
    • /
    • 2000
  • This paper compares the measurement values of harmonics to the analysis results in railroads testing system. Therefore, in this paper, new program to calculate THD(Total Harmonic Distortion) and measuring system of harmonics are developed. The harmonic measurement point is PCC(Point of Common Coupling), the primary side(154kV) of scott transformer, and the analysis is performed based on real KEPCO system data. As a result of this study, it is possible to present basic data and informations about harmonic problems which can be occurred in the future commercial railroad systems.

  • PDF

Precise Modeling and Adaptive Feed-Forward Decoupling of Unified Power Quality Conditioners

  • Wang, Yingpin;Obwoya, Rubangakene Thomas;Li, Zhibo;Li, Gongjie;Qu, Yi;Shi, Zeyu;Zhang, Feng;Xie, Yunxiang
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.519-528
    • /
    • 2019
  • The unified power quality conditioner (UPQC) is an effective custom power device that is used at the point of common coupling to protect loads from voltage and current-related PQ issues. Currently, most researchers have studied series unit and parallel unit models and an idealized transformer model. However, the interactions of the series and parallel converters in AC-link are difficult to analyze. This study utilizes an equivalent transformer model to accomplish an electric connection of series and parallel converters in the AC-link and to establishes a precise unified mathematical model of the UPQC. The strong coupling interactions of series and parallel units are analyzed, and they show a remarkable dependence on the excitation impedance of transformers. Afterward, a feed-forward decoupling method based on a unified model that contains the uncertainty components of the load impedance is applied. Thus, this study presents an adaptive method to estimate load impedance. Furthermore, simulation and experimental results verify the accuracy of the proposed modeling and decoupling algorithm.

인버터 기반 신재생 에너지 발전 시스템의 계통 지원 운전을 위한 계통 전압 검출 방법 (A Detection Method of Grid Voltage for Grid Support Operation of an Inverter-based Renewable Energy Generation System)

  • 안현철;송승호
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.51-57
    • /
    • 2013
  • The Grid code is being strengthen as increase of renewable energy ratio. Especially, the grid connection regulations are continuously being updated for stable operation of power grids. Static grid support and Dynamic grid support must make an accurate measure at Grid connected point because they needs control algorithm individually. It has to exactly measure voltage including switching ripple at the output of the inverter generating system. In addition, it is necessary to have an accurate voltage measurement when the situation rapidly changing the grid impedance is caused by the input of serial impedance of transformer and line impedance as well as Grid Fault Device. In this paper, We propose a new detection method of grid voltage to calculate accurately the r.m.s voltage of the grid connection point along the standard required by the low voltage regulation. We verified performance through simulation grid fault device.

A Low Phase Noise 5.5-GHz SiGe VCO Having 10% Bandwidth

  • Lee Ja-Yol;Park Chan Woo;Bae Hyun-Cheol;Kang Jin-Young;Kim Bo-Woo;Oh Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • 제4권4호
    • /
    • pp.168-174
    • /
    • 2004
  • A bandwidth-enhanced and phase noise-improved differential LC-tank VCO is proposed in this paper. By connecting the varactors to the bases of the cross-coupled transistors of the proposed LC-tank VCO, its input negative resistance has been widened. Also, the feedback capacitor Cc in the cross-coupling path of the proposed LC-tank VCO attenuates the output common-mode level modulated by the low-frequency noise because the modulated common-mode level jitters the varactor bias point and degrades phase noise. Compared with the fabricated conventional LC-tank VCO, the proposed LC-tank VCO demonstrates $200\;\%$ enhancement in tuning range, and 6 - dB improvement in phase noise at 6 MHz offset frequency from 5.4-GHz carrier. We achieved the phase noise of - 106 dBc/Hz at 6 MHz offset, and $10\;\%$ tuning range from the proposed LC-tank VCO. The proposed LC-tank VCO consumes 12 mA at 2.5 V supply voltage.

Advanced Repetitive Controller to Improve the Voltage Characteristics of Distributed Generation with Nonlinear Loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.409-418
    • /
    • 2013
  • This paper presents an enhanced control strategy which consists of a proportional-integral controller and a repetitive controller (RC) for improving the voltage performance of distributed generation (DG) under nonlinear load conditions. The proposed voltage controller is able to maintain a sinusoidal voltage at the point of common coupling (PCC) of the DG regardless of the harmonic voltage drop in the system impedance due to nonlinear load currents. In addition, by employing the delay time of the RC at one-sixth of the fundamental period, the proposed RC can overcome the slow response drawback of the traditional PI-RC. The proposed control strategy is analyzed and the design of the RC is presented in detail. The feasibility of the proposed control strategy is verified through simulation and experimental results.

Analysis and Compensation of PCC Voltage Variations caused by Wind Turbine Power Fluctuations

  • Im, Ji-Hoon;Song, Seung-Ho;Kang, San
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.854-860
    • /
    • 2013
  • The voltage variation problem at the point of common coupling (PCC) in a grid-connected wind turbine is investigated. The voltage variation problem is one of the most frequent power quality issues for the grid connection of large amounts of input power in a weak grid. Through the simplified modeling of the wind turbine and power network, the magnitude of PCC voltage variation is calculated by using the equivalent circuit parameters and output power of the wind turbine. The required amount of reactive power that can compensate the voltage variation is also presented analytically by using the vector diagram method. The proposed calculation and compensation method of the PCC voltage variation is verified by computer simulations and experiments.

Power Quality Improvement of an Electric Arc Furnace Using a New Universal Compensating System

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein;Ali Yazdian-Varjani
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.195-204
    • /
    • 2006
  • This paper presents a new compensating system, consisting of series and shunt active filters, for mitigating voltage and current disturbances. The shunt filter is used to compensate for unbalanced and distorted load currents. The series filter comprises two inverters, used to suppress voltage disturbances and handle source currents independently. This configuration is devised to reduce the overall cost of active compensators by using low-frequency high-current switches for the latter inverter. The filters are controlled separately using a novel control strategy. Since voltages at the point of common coupling contain interharmonics, conventional methods cannot be used for extracting voltage references. Therefore, voltage references are obtained from generated sinusoidal waveforms by a phase-locked loop. Current references are detected based on rotating frame vector mapping. Simulation results are presented to verify the system.

A New Control Strategy for Distributed Generation under Nonlinear loads

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.256-257
    • /
    • 2012
  • This paper presents a new control strategy to improve voltage performance of distributed generation (DG) under nonlinear loads. The proposed voltage controller consists of a proportional-integral and a repetitive controller where the repetitive controller behaves as a bank of resonant controllers to compensate harmonic voltage drop on system impedance due to nonlinear load current. As a result, the voltage at the point of common coupling (PCC) of the DG is regulated to be sinusoidal waveform regardless of the presence of nonlinear loads. In order to validate the effectiveness of the proposed voltage controller, simulations are carried out using PSIM software and results are compared with those with the conventional PI controller.

  • PDF

정궤환을 이용한 무효전력 변동기반의 단독운전 방지 성능 검증 (Performance Verification of Anti-Islanding of Reactive Power Variation Method using Positive Feedback)

  • 조종민;신창훈;차한주
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.105-110
    • /
    • 2019
  • This study proposed a reactive power variation (RPV) method equipped with positive feedback (PF) for detecting the islanding operation of distributed generation systems. The proposed RPV consists of the constant reactive power component and a certain reactive power term and uses the frequency deviation between the rated and the measured frequencies. The constant reactive power is injected from distributed generation system and power factor is to 0.9975 in grid-connected operation. PF is activated from generation of the frequency deviation and the injected reactive power is continuously increased due to PF when islanding occurs. Consequently, the increasing reactive power causes the point of common coupling frequency to deviate from the maximum/minimum threshold level. Performance of the proposed RPV is verified in a 1.7 kW T-type inverter, and the detection times are 53 and 150 ms.