• Title/Summary/Keyword: Point load strength

Search Result 449, Processing Time 0.028 seconds

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

A Study of Statistic Behavior of Segmental U-shaped Prestressed Concrete Girder Applied with Integrated Tensioning Systems (복합긴장방식이 적용된 세그멘탈 U형 거더 정적 거동 연구)

  • Hyunock Jang;Ilyoung Jang
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.329-338
    • /
    • 2024
  • Purpose: This study verified the safety of the improved box-type girder behavior by comparing and evaluating the bending behavior results of a full-scale specimen based on the analytical behavior of the splice element PSC U-shaped girder with integrated tensioning systems. Method: Based on the results of the service and strength limit state design using the bridge design standard(limit state design method), the applied load of a 40m full-scale specimen was calculated and a static loading experiment using the four-point loading method was performed. Result: When the design load, crack load, and ultimate load were applied, the specimen deflection occurred at 97.1%, 98.5%, and 79.0% of the analytical deflection value. When the design load, crack load, and ultimate load were applied, the crack gauge was measured at 0.009~0.035mm, 0.014~0.050mm, and 6.383~5.522mm at each connection. Conclusion: The specimen behaved linear-elastically until the crack load was applied, and after cracks occurred, it showed strainhardening up to the ultimate load, and it was confirmed that the resistance of bending behavior was clearly displayed against the applied load. The cracks in the dry joints were less than 25% of grade B based on the evaluation of facility condition standard. The final residual deformation after removing the ultimate load was 0.114mm, confirming the stable behavior of the segment connection.

The Study of an Automatic Tracking and Pointing Method and the Regarding System for Facing Two Antennas (상호 대국의 안테나 간 자동 추적 지향 기법 및 장치 연구)

  • Gimm, Hak In;Cho, Sung Hoon;Lee, Chong Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.498-509
    • /
    • 2015
  • The existing mobile antenna networks in the military use have been operated by the manual pointing between two antennas. The work presented here describes the study of ATPC(Automatic Tracking and Pointing Control) system between facing antennas and the related tracking and pointing performances. This system is able to automatically track the maximum RSSI(Received Signal Strength Indication) value from the source's RF(Radio Frequency) signal and then control for maintaining the LOS(Line of Sight) between two antennas. The system has three major units; the driving unit consisting of motors, harmonic drives and encoders, the sensor unit with a GPS(Global Positioning System) and AHRS(Attitude and Heading Reference System) and the control unit regulating all the tracking and pointing events. By using PI(Proportional and Integral) controller, this system is able to properly track and point the other antenna under the external disturbance like the wind load. Both the simulation and the experimental works have been successively carried out to prove the performances of the system.

Investigation on the Strength and Vibration Safety of the Liquid Rocket Turbopump Turbine (액체로켓 터보펌프 구동터빈의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon,Seong-Min;Kim,Jin-Han;Lee,Dae-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.77-84
    • /
    • 2003
  • Structural analyses of a turbine bladed-disk for a liquid rocket turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to the high rotational speed of the turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Thermal load caused by extreme temperature distribution is also considered as an external force applied to turbine bladed-disk. A three dimensional finite element method (FEM) is used for cyclic symmetry structural analyses with the MSC/NASTRAN DMAP Alter. Interblade phase angles are considered to investigate structural dynamic characteristics as a function of rotational speed. Through the numerical analysis, effects of centrifugal and thermal loads on the turbine bladed-disk are examined.

Evaluation of Flexural Strength Capacity of Large Scale RC Slabs Strengthened with Prestressed CFRP Plate (긴장된 CFRP판으로 보강된 대규모 RC 슬래브의 휨성능 평가)

  • Hong, Ki-Nam;Han, Sang-Hoon;Lee, Byong-Ro;Gwon, Yong-Gil;Woo, Sang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • This paper presents the results of a study on flexural capacity of large size RC slabs strengthened with carbon fiber reinforced polymer(CFRP) plates. A total of 5 specimens of 6.0m length were tested in four point bending after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with two prestress levels, 0.4% and 0.6% of CFRP plate strain. Test variables included the type of strengthening, prestressing level, and the effects according to each test variables are analysed. The experimental results show that proposed methods can increase significantly the flexural capacity such as strength, stiffness of the beam and the increase ranged between 36.2% and 63.2% of the load-carrying capacity of the control beams. The non-prestressed specimen failed by separation of the plate from the beam due to premature debonding while most of the prestressed specimens failed by CFRP plate fracture. And the cracking loads and maximum loads were increased proportionally to the prestress level.

Shear Behaviour of RC Beams Strengthened by Multi directional channel-type FRP Plate (다방향 채널형 FRP판으로 보강된 철근콘크리트 보의 전단거동)

  • Han, Jae-Won;Hong, Ki-Nam;Han, Sang-Hoon;Kwon, Yong-Kil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.173-176
    • /
    • 2008
  • The aim of this paper is to clarify the shear behavior of RC beams strengthened with channel-type Fiber Reinforced Polymer(FRP) plates. Fourteen RC beams were specifically designed. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with channel-type Fiber Reinforced Polymer(FRP) plates, a brittle debonding failure of beams bonding FRP in the concrete surface can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

  • PDF

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier (멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

The Crack Control of Fiber Net Reinforced RC Slab (섬유망을 이용한 RC슬래브의 균열제어)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Nam-Wook;Kim, Chul-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.225-231
    • /
    • 2002
  • Severe cracks on Reinforced Concrete (RC) structures caused by structural displacement can be often one of the main reasons for the degradation of tensile and flexural rigidities of RC structures and for the deterioration of durability and serviceability of RC structures through accelerated steel corrosion. These combined factors adversely affect the performance of RC concrete, leading to shortened life time of RC structures. In consideration of these problems, we conducted 3 point bending experiments by employing three different types of concrete specimens: fiber-net reinforced concrete (FNRC), polypropylene-fiber reinforced concrete (PFRC), and plain concrete (PC). FNRC is well known for its strong corrosion resistance, light self-weight, and excellent tensile strength, while PFRC is known to be effective in crack control. FNRC was found to have the best first and final crack resistances followed by PFRC and PC, as evidenced by the highest initial crack load and the smallest final crack width, respectively. The FNRC specimens with various tensile strength of fiber net exhibited greater ultimate strengths than those for PFRC and PC. Furthermore, the crack widths of FNRC specimens were smaller than those calculated by the crack-width estimation equation of the KCI and ACI code. Therefore, we conclude that fiber net reinforcement is effective not only on crack control, but also on loading share.

Section Analysis of EMS Rail by Finite Element Analysis (유한요소해석을 통한 EMS 레일 단면 해석)

  • Yu, Byoung Kwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • Among the material handling system, EMS (Electric Monorail System), which is the facility of transferring the material hanging on truss, has the strength point of the maximum utilization of working space and the improvement of working environment including low-level noise generation. This paper will introduce the variable method of EMS rail analysis, which has the main role of supporting the whole material weight and guiding them with high-speed transportation, and, based on the analysis, the direction of optimization of the rail design be described. The rail with light-weight and high-strength contributes the reduction of the load of truss, the cost-down of rail production and the easy-installation on site.