• 제목/요약/키워드: Point dose

검색결과 635건 처리시간 0.022초

EBT-3 필름을 사용한 감마나이프 퍼펙션TM의 치료 계획 시스템 및 선량 분포 비교 분석 (Comparative Analysis of Treatment Planning System and Dose Distribution of Gamma knife PerfexionTM using EBT-3 Film)

  • 진성진;김성진;서원섭;허병익
    • 한국방사선학회논문지
    • /
    • 제11권6호
    • /
    • pp.509-515
    • /
    • 2017
  • 본 연구는 EBT3 필름을 이용하여 감마나이프 퍼펙션 모델의 3차원적인 선량분포 측정하고 기준값과 비교 분석하여 표준화된 측정방법의 기초로 활용하고자 한다. 2개 종합병원에 설치된 감마나이프 퍼펙션 모델의 선량 분포를 EBT3 필름을 이용하여 정확도와 정밀도를 평가하였다. 정확도 평가를 위해 4 mm 콜리메터를 사용하여 기계적인 중심축과 선량중심축의 일치도를 측정하였다. A병원 0.098 mm, 0.195 mm 이며 B 병원 0.229 mm, 0.223 mm 로 허용 오차 0.3 mm 이하로 측정되었다. 정밀도 평가는 4, 8, 16 mm 콜리메터(collimater) 각각의 x, y, z 3차원면 에서의 반치폭(FWHM : Full Width at Half Maximum)을 이미지-제이 프로그램을 이용하여 평가하였다. A 병원은 -0.283~0.583 mm, B 병원은 -0.857~0.810 mm로 50%선 ${\pm}1mm$ 이하의 기준에 적합하였다. 이미지-제이 프로그램을 이용한 선량 분포 분석의 경우 측정자 간의 오차가 발생 가능함으로 측정점에 대한 명확한 기준을 확립할 필요가 있으며, 감마나이프 방사선 수술이 시행되어지는 고선량 영역에서 사용 가능한 선량영역이 높은 필름을 이용한 치료계획과 실제 치료 조사면의 비교가 필요하다고 생각된다.

Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer

  • Son, Jaeman;Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Chie, Eui Kyu;Yoon, Jeongmin;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제29권2호
    • /
    • pp.47-52
    • /
    • 2018
  • To investigate the effect of low magnetic field on dose distribution in SABR plans for liver cancer, we calculated and evaluated the dose distribution to each organ with and without magnetic fields. Ten patients received a 50 Gy dose in five fractions using the $ViewRay^{(R)}$ treatment planning system. For planning target volume (PTV), the results were analyzed in the point minimum ($D_{min}$), maximum ($D_{max}$), mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$), and 100% ($V_{100%}$) of the prescription dose, respectively. For organs at risk (OARs), the duodenum and stomach were analyzed with $D_{0.5cc}$ and $D_{2cc}$, and the remained liver except for PTV was analyzed with $D_{mean}$, $D_{max}$, and $D_{min}$. Both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$, and $D_{mean}$, respectively. For PTV, the maximum change in volume due to the presence or absence of the low magnetic field showed a percentage difference of up to $0.67{\pm}0.60%$. In OAR analysis, there is no significant difference for the magnetic field. In both shell structure analyses, although there are no major changes in dose distribution, the largest value of deviation for $D_{max}$ in the outer shell is $2.12{\pm}2.67Gy$. The effect of low magnetic field on dose distribution by a Co-60 beam was not significantly observed within the body, but the dose deposition was only appreciable outside the body.

고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動) (Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron)

  • 추성실;이도행;최병숙
    • Journal of Radiation Protection and Research
    • /
    • 제1권1호
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

CHO 세포에서 비소의 세포독성기전 (Mechanism of Arsenic-Induced Cytotoxiciht in CHO Cells)

  • 정해원;기혜성;박영철;한정호;유일재
    • 한국환경성돌연변이발암원학회지
    • /
    • 제16권2호
    • /
    • pp.117-123
    • /
    • 1996
  • This study was carried out to examine the mechanism of Arsenic cytotoxicity through several in vitro test systems. Dose-dependent decrease of cell survival by Arsenic was observed by colony forming assay. Arsenic was weak mutagenic in inducing HGPRT point mutation in CHO cells. The frequency of chromosomal aberrations increased in a dose-dependent manner and the most frequent type of chromosomal aberrations induced by Arsenic were chromatid type deletions. U!trafiltrates of culture media from CHO cells treated with Arsenic induced sister chromatid exchanges(SCE) in CHO cells and Arsenic was able to induce lipid peroxidation in CHO cells. The results suggested that the ultrafiltrates of media from CHO cells treated with Arsenic contain clastogenic factor(CF) and Iipid peroxidation might be involved in the formation of CF.

  • PDF

Benchmark Dose Modeling of In Vitro Genotoxicity Data: a Reanalysis

  • Guo, Xiaoqing;Mei, Nan
    • Toxicological Research
    • /
    • 제34권4호
    • /
    • pp.303-310
    • /
    • 2018
  • The methods of applied genetic toxicology are changing from qualitative hazard identification to quantitative risk assessment. Recently, quantitative analysis with point of departure (PoD) metrics and benchmark dose (BMD) modeling have been applied to in vitro genotoxicity data. Two software packages are commonly used for BMD analysis. In previous studies, we performed quantitative dose-response analysis by using the PROAST software to quantitatively evaluate the mutagenicity of four piperidine nitroxides with various substituent groups on the 4-position of the piperidine ring and six cigarette whole smoke solutions (WSSs) prepared by bubbling machine-generated whole smoke. In the present study, we reanalyzed the obtained genotoxicity data by using the EPA's BMD software (BMDS) to evaluate the inter-platform quantitative agreement of the estimates of genotoxic potency. We calculated the BMDs for 10%, 50%, and 100% (i.e., a two-fold increase), and 200% increases over the concurrent vehicle controls to achieve better discrimination of the dose-responses, along with their BMDLs (the lower 95% confidence interval of the BMD) and BMDUs (the upper 95% confidence interval of the BMD). The BMD values and rankings estimated in this study by using the EPA's BMDS were reasonably similar to those calculated in our previous studies by using PROAST. These results indicated that both software packages were suitable for dose-response analysis using the mouse lymphoma assay and that the BMD modeling results from these software packages produced comparable rank orders of the mutagenic potency.

양방사선 골밀도 측정 장치의 공간산란선량분포측정 (Bone Density Spatial Distribution of Radiation Dose Measurement)

  • 김선칠;원도연;박창희;동경래
    • 대한디지털의료영상학회논문지
    • /
    • 제13권2호
    • /
    • pp.59-62
    • /
    • 2011
  • In this experiment, how DEXA(Dual-energy X-ray Absorptiometry) bone mineral density was measured using the equipment. In order to maintain the same measurement conditions, bone mineral density measurements of 10 cm thick phantom, with an actual patient at a point when examining the same conditions(100 kVp, 1 mA) and then out to the five doses of radiation and its average was calculated by dividing measured. X-ray dose rate measured at the Research Institute, Sword of the gamma survey meters calibrated MEDCOM Ltd. (Inspector GM counter tube) was used, calibration factor is 1.15. On a horizontal plane around the patient, depending on the distance was significantly reduced dose rate. In addition, orientation $0^{\circ}$ head end was higher in the direction of the highest dose rate, $0^{\circ}$ $180^{\circ}$ direction from the direction towards the higher dose rate reduced to some extent in the direction of all the $120^{\circ}$ were able to identify.

  • PDF

전신방사선조사시 균등한 선량분포를 이루기 위한 조직보상체의 이용 (Utilization of Tissue Compensator for Uniform Dose Distribution in Total Body Irradiation)

  • 박승진;정웅기;안성자;남택근;나병식
    • Radiation Oncology Journal
    • /
    • 제12권2호
    • /
    • pp.233-241
    • /
    • 1994
  • 연구목적 : 전신방사선조사시 인체내에 균등한 선량분포를 얻기 위하여 조직보상체를 제작하고 그에따른 선량 분포를 확인하고자 하였다. 대상 및 방법 : 0.8mm두께의 납판을 이용한 조직보상체와, 1mm 및 5mm 두에의 알루미늄판을 이용한 조직보상체를 두경부와 하지 두 부분에 대하여 각각 제작하였다. 좌우 대향전신조사시 각 신체부위에 따른 선량분포의 측정을 위하여 파라핀으로 성인 크기의 인체 모형을 실제 치료시의 체위와 비슷하게 만들어 사용하였다. 방사선은 10MV X-ray(CLIAC 1800. Varian Co., USA)를, 측정기구는 exposure/exposure rate meter(model 192, Capintec, Inc., USA)with ionization chamber(PR 05)를 이용하였고 SAD 360cm에 파라핀 팬텀의 정중선을 맞추고 기하학적 방사선조사야는 $144{\times}144cm^2$으로하여 전신이 포함되도록 하였으며 head, mouth, mid-neck, sternal notch. mid-mediastinum, xiphoid, umbilicus. pelvis. thigh. knee 및 ankle부위에서 midline absorbed dose를 각각 측정하였다. 흉부의 선량 측정에는 조직등가물질로 제작된 상업용 humanoid 팬텀에서 $1{\times}1{\times}6mm^3$부피의 TLD rod(LiF, Harshaw Co.. Netherland)를 이용하였다. 결과 : Umbilicus를 기준으로 하였을때 조직보상체를 적용하지 않은 경우 흡수선량은 $-11.8\%$에서 $21.1\%$까지의 차이를 보였다. 어깨가 포함되는 sternal notch에서의 선량은 $11.8\%$감소하였다. 조직보상체를 적용한 경우의 흡수선량은 0.8mm 납보상체의 경우 mid-neck에서 $-7.9\%$, 그외 다른 부위는 $+1.3\%$에서 $-5.3\%$가지 였다. 그리고 1mm 및 5mm 알루미늄 보상체를 적용한 경우 ankle부위에서 $5.3\%$. 그외 다른 부위는 $-2.6\%$에서 $2.6\%$가지의 흡수선량 차이를 보였다. 결론 : 납과 알루미늄으로 제작한 전신방사선조사용 조직보상체는 선량기준점인 umbilicus선량에 비교하였을 때 두경부와 하지에 있어서 비교적 만족할만한 보상효과를 나타내었다. 어깨가 있는 상흉부에서는 선량이 $11.8\%$ 정도 감소하므로 환자의 lateral thickness 차이에 따라 선량기준점을 sternal notch로 선택하거나 boost irradiation이 고려되어야함을 알 수 있었다.

  • PDF

문 개폐 여부와 차폐체 설치 유무에 따른 공간산란선량 측정 : X선 촬영 시 피폭선량 감소방안에 대한 연구 (Measurement of the Spatial Scattering Dose by Opening, Closing Door and Installing Shielding : A Study on the Reduction of Exposure Dose in Radiography)

  • 윤홍주;이용기;이인자
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.477-482
    • /
    • 2019
  • Recently, due to the increased use of medical radiation, the radiation exposure of radiation workers should be considered as well as medical exposure of patients. And it is recommended to close the door during radiography. however, In this study, when the door was inevitably opened for radiography, the proposed method was to install the shield as a method of reducing the exposure dose. And its efficiency was analyzed. In simple chest radiography, the measurement point was changed according to the measurement location. Dose rate were measured 10 times for each condition using a dosimeter. And the average value was derived. Using this, the change of dose according to the opening and closing of the door and the installation of the shield was analyzed. Using this, we compared and analyzed the dose change according to the door opening and closing and the installation of the shield, and significance was verified through the SPSS ver. 24. Depending on whether the door was opened or closed, 11,215.35%, 159.0%, 101.9% increased in front of the door in the consol room, behind the wall and behind the lead glass. Depending on the installing of the shield, the 49.2%, 29.6%, 19.9%, 30.6% decrease in front of the door in the examination and consol room, behind the wall and lead glass. In addition, statistical analysis was showed that there were significant differences in both the results according to whether the door was opened or closed and shielding(p<.05). Close the door during radiography. However, when the door should be opened, it was confirmed that the dose rate were reduced by installing the shield. Therefore, to optimize radiation protection, it is recommended to install shields when opening the door.

코발트-60 조사야 밖의 장기에 미치는 2차선의 영향 (Effect of Scatter ray in Outside Telecobalt-60 Field Size)

  • 김유현;김영환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제11권2호
    • /
    • pp.65-71
    • /
    • 1988
  • Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest estimating organ dose. We have made measurements of dose at distances up to 70 cm from the central axis of $5{\times}5$, $10{\times}10$, $15{\times}15$, and $25{\times}25$ cm radiation fields of Co-60 ${\gamma}-ray$, at 5 cm depth in water. Contributions to the total secondary radiation dose from water scatter, machine (collimator) scatter and leakage radiation have been seperated. We have found that the component of dose from water scatter can be described by simple exponential function of distance from the central axis of the radiation field for all field sizes. Machine scatter contributes 20 to 60% of the total secondary dose depending on field size and distance from the field. Leakage radiation contributes very little dose, but becomes the dominant componant at distance beyond 40 cm from the central axis. Then, wedges can cause a factor 2 to 3 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  • PDF

용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰 (Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy)

  • 정동민;박광순;안혁진;최윤원;박별님;권용재;문성공;이종운;정태식;박령황;김세영;김미정;백종걸;조정희
    • 대한방사선치료학회지
    • /
    • 제33권
    • /
    • pp.9-14
    • /
    • 2021
  • 용적조절호형방사선치료(Volumetric Modulated Arc Therapy)의 다중치료중심(Multi-Isocenter)을 이용하여 치료 시, 접합부(Junction)의 재현 오차에 따른 선량변화에 대해 고찰하였다. Arccheck Phantom에 임의의 치료부위를 설정하고, 다중치료중심에 대해 치료계획을 수립하였다. 그리고 X(왼쪽), Y(위쪽), Z(안쪽, 바깥쪽) 방향에 대해서 접합부의 오차를 0 ~ 4 mm로 설정 후 선형가속기를 이용하여 방사선을 조사하였고, 이 후 phantom을 통해 얻어진 점 선량(point dose)과 감마인덱스(gamma Index)를 통해 분석하였다. X방향과 Y방향에 대한 오차가 2, 4 mm 발생 했을 때, 감마패스율(점 선량)은 각각 99.3% (2.085), 98% (2.079 Gy) 와 98.5% (2.088), 95.5% (2.093 Gy)로 나타났다. 그리고 Z방향에 대해서 안쪽과 바깥쪽에 대한 오차가 1, 2, 4 mm 발생 했을 때, 감마패스율(점 선량)은 각각 94.8% (2.131), 82.6% (2.164), 72.8% (2.22 Gy) 와 93.4% (2.069), 90.6% (2.047), 79.7% (1.962 Gy) 로 보여졌다. X, Y방향에 대해서 4 mm 까지의 오차 결과는 허용오차 안에 있었으나, Z방향에 대해서는 1 mm 를 초과하는 오차 값에 대해서 허용오차 밖의 결과 값이 도출되었다. 이는 높은 선량 영역(high dose area)과 낮은 선량 영역(low dose area)에 대해 치료부위의 진행방향과 같은 방향의 오차가 선량 분포(dose distribution)가 더 민감하다는 것을 시사한다. 향후 지속적인 연구를 통해 기관차원의 셋 업(set up) 오차에 대한 가이드라인이 정립된다면, 접합부를 이용한 치료에서 양질의 치료를 제공할 수 있을 것이라 사료된다.