• Title/Summary/Keyword: Point cloud data

Search Result 495, Processing Time 0.026 seconds

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.

A Study on Cross-sectioning Methods for Measured Point Data (측정 점데이터로부터 단면 데이터 추출에 관한 연구)

  • 우혁제;강의철;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.272-276
    • /
    • 2000
  • Reverse engineering refers to the process that creates a physical part from acquiring the surface data of an existing part using a scanning device. In recent years, as the non-contact type scanning devices become more popular, the huge amount of point data can be obtained with high speed. The point data handling process, therefore, becomes more important since the scan data need to be refined for the efficiency of subsequent tasks such as mesh generation and surface fitting. As one of point handling functions, the cross-sectioning function is still frequently used for extracting the necessary data from the point cloud. The commercial reverse engineering software supports cross-sectioning functions, however, these are only for cross-sectioning the point cloud with the constant spacing and direction. In this paper, adaptive cross-sectioning point cloud which allow the changes of the spacing and directions of cross-sections according to the constant spacing and direction. In this paper, adaptive cross-sectioning algorithms which allow the changes of the spacing and directions of cross-sections according to the curvature difference of the point cloud data are proposed.

  • PDF

A Basic Study on Trade-off Analysis of Downsampling for Indoor Point Cloud Data (실내 포인트 클라우드 데이터 Downsampling의 Trade-off 분석을 통한 기초 연구)

  • Kang, Nam-Woo;Oh, Sang-Min;Ryu, Min-Woo;Jung, Yong-Gil;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.40-41
    • /
    • 2020
  • As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.

  • PDF

A Progressive Rendering Method to Enhance the Resolution of Point Cloud Contents (포인트 클라우드 콘텐츠 해상도 향상을 위한 점진적 렌더링 방법)

  • Lee, Heejea;Yun, Junyoung;Kim, Jongwook;Kim, Chanhee;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.258-268
    • /
    • 2021
  • Point cloud content is immersive content that represents real-world objects with three-dimensional (3D) points. In the process of acquiring point cloud data or encoding and decoding point cloud data, the resolution of point cloud content could be degraded. In this paper, we propose a method of progressively enhancing the resolution of sequential point cloud contents through inter-frame registration. To register a point cloud, the iterative closest point (ICP) algorithm is commonly used. Existing ICP algorithms can transform rigid bodies, but there is a disadvantage that transformation is not possible for non-rigid bodies having motion vectors in different directions locally, such as point cloud content. We overcome the limitations of the existing ICP-based method by registering regions with motion vectors in different directions locally between the point cloud content of the current frame and the previous frame. In this manner, the resolution of the point cloud content with geometric movement is enhanced through the process of registering points between frames. We provide four different point cloud content that has been enhanced with our method in the experiment.

Accuracy Evaluation by Point Cloud Data Registration Method (점군데이터 정합 방법에 따른 정확도 평가)

  • Park, Joon Kyu;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • 3D laser scanners are an effective way to quickly acquire a large amount of data about an object. Recently, it is used in various fields such as surveying, displacement measurement, 3D data generation of objects, construction of indoor spatial information, and BIM(Building Information Model). In order to utilize the point cloud data acquired through the 3D laser scanner, it is necessary to make the data acquired from many stations through a matching process into one data with a unified coordinate system. However, analytical researches on the accuracy of point cloud data according to the registration method are insufficient. In this study, we tried to analyze the accuracy of registration method of point cloud data acquired through 3D laser scanner. The point cloud data of the study area was acquired by 3D laser scanner, the point cloud data was registered by the ICP(Iterative Closest Point) method and the shape registration method through the data processing, and the accuracy was analyzed by comparing with the total station survey results. As a result of the accuracy evaluation, the ICP and the shape registration method showed 0.002m~0.005m and 0.002m~0.009m difference with the total station performance, respectively, and each registration method showed a deviation of less than 0.01m. Each registration method showed less than 0.01m of variation in the experimental results, which satisfies the 1: 1,000 digital accuracy and it is suggested that the registration of point cloud data using ICP and shape matching can be utilized for constructing spatial information. In the future, matching of point cloud data by shape registration method will contribute to productivity improvement by reducing target installation in the process of building spatial information using 3D laser scanner.

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

Comparative Experiment of 2D and 3D DCT Point Cloud Compression (2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험)

  • Nam, Kwijung;Kim, Junsik;Han, Muhyen;Kim, Kyuheon;Hwang, Minkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.553-565
    • /
    • 2021
  • Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.

Real-time Polygon Generation and Texture Mapping for Tele-operation using 3D Point Cloud Data (원격 작업을 위한 3 차원 점군 데이터기반의 실시간 폴리곤 생성 및 텍스처 맵핑 기법)

  • Jang, Ga-Ram;Shin, Yong-Deuk;Yoon, Jae-Shik;Park, Jae-Han;Bae, Ji-Hun;Lee, Young-Soo;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.928-935
    • /
    • 2013
  • In this paper, real-time polygon generation algorithm of 3D point cloud data and texture mapping for tele-operation is proposed. In a tele-operation, it is essential to provide more highly realistic visual information to a tele-operator. By using 3D point cloud data, the tele-operator can observe the working environment from various view point with a reconstructed 3D environment. However, there are huge empty space in 3D point cloud data, since there is no environmental information among the points. This empty space is not suitable for an environmental information. Therefore, real-time polygon generation algorithm of 3D point cloud data and texture mapping is presented to provide more highly realistic visual information to the tele-operator. The 3D environment reconstructed from the 3D point cloud data with texture mapped polygons is the crucial part of the tele-operation.

Example of Application of Drone Mapping System based on LiDAR to Highway Construction Site (드론 LiDAR에 기반한 매핑 시스템의 고속도로 건설 현장 적용 사례)

  • Seung-Min Shin;Oh-Soung Kwon;Chang-Woo Ban
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1325-1332
    • /
    • 2023
  • Recently, much research is being conducted based on point cloud data for the growth of innovations such as construction automation in the transportation field and virtual national space. This data is often measured through remote control in terrain that is difficult for humans to access using devices such as UAVs and UGVs. Drones, one of the UAVs, are mainly used to acquire point cloud data, but photogrammetry using a vision camera, which takes a lot of time to create a point cloud map, is difficult to apply in construction sites where the terrain changes periodically and surveying is difficult. In this paper, we developed a point cloud mapping system by adopting non-repetitive scanning LiDAR and attempted to confirm improvements through field application. For accuracy analysis, a point cloud map was created through a 2 minute 40 second flight and about 30 seconds of software post-processing on a terrain measuring 144.5 × 138.8 m. As a result of comparing the actual measured distance for structures with an average of 4 m, an average error of 4.3 cm was recorded, confirming that the performance was within the error range applicable to the field.

Automation technology for analyzing 3D point cloud data of construction sites

  • Park, Suyeul;Kim, Younggun;Choi, Yungjun;Kim, Seok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1100-1105
    • /
    • 2022
  • Denoising, registering, and detecting changes of 3D digital map are generally conducted by skilled technicians, which leads to inefficiency and the intervention of individual judgment. The manual post-processing for analyzing 3D point cloud data of construction sites requires a long time and sufficient resources. This study develops automation technology for analyzing 3D point cloud data for construction sites. Scanned data are automatically denoised, and the denoised data are stored in a specific storage. The stored data set is automatically registrated when the data set to be registrated is prepared. In addition, regions with non-homogeneous densities will be converted into homogeneous data. The change detection function is developed to automatically analyze the degree of terrain change occurred between time series data.

  • PDF