• Title/Summary/Keyword: Point Stress Criterion

Search Result 62, Processing Time 0.028 seconds

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites (홀 노치를 포함한 평직 탄소섬유강화플라스틱의 파괴기준 연구)

  • Kim, Sang-Young;Geum, Jin-Hwa;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.481-486
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic (CFRP) have been used in various fields because of its high specific modulus, and chemical properties. Most products in which CFRP composites are used are manufactured by joining the product components by bolts or pins. Holes for bolts and pins decrease the strength of the components because these holes act as notches in the structures. In this study, the fracture strength of CFRP plain-weave composite plates containing holes is experimentally investigated to examine the effects of hole-size and specimen width on notched tensile strength. The results show that the characteristic length considered in the point stress criterion depends on the hole size and specimen width. There exists a certain relation between notched tensile strength and characteristic length. Fracture criterion is redefined on basis of this relation.

Minimum Weight Design Method for Infantry Fighting Vehicles Hull using Thick Composite Laminate (전투용 차량의 경량화 최적설계 기법 연구)

  • 김건인;조맹효;구만회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2001
  • In this paper, general design process for Tracked Fighting Vehicle has been suggested. Stress analysis and optimal design for ply angle of IFV's composite upper hull has been calculated using KMA CIFV and it is contained exploratory development of design process. In this point, this paper applied composite to IFV's upper hull. Finite element mesh has been made using Matlab program, and we have analyzed stress based on the given material properties and ply arrangement. For each load condition, load distribution in plane and failure index are calculated by using Tasi-Hill criterion, which is composite failure criterion and analyzing change of failure index as change of ply angle. Finally, optimal ply angles of upper hull are calculated using KMA CIFV. We can estimate the decrease of weight for IFV's upper hull.

  • PDF

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

  • Carpinteri, Alberto;Cornetti, Pietro;Pugno, Nicola;Sapora, Alberto;Taylor, David
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.609-620
    • /
    • 2009
  • In this paper the results of a series of experimental tests upon three-point bending specimens made of polystyrene and containing re-entrant corners are firstly described. Tests involved different notch angles, different notch depths and finally different sizes of the samples. All the specimens broke at the defect, as expected because of the material brittleness and, hence, the generalized stress intensity factor was expected to be the governing failure parameter. Recorded failure loads are then compared with the predictions provided by a fracture criterion recently introduced in the framework of Finite Fracture Mechanics: fracture is assumed to propagate by finite steps, whose length is determined by the contemporaneous fulfilment of energy balance and stress requirements. This fracture criterion allows us to achieve the expression of the generalized fracture toughness as a function of the tensile strength, the fracture toughness and the notch opening angle. Comparison between theoretical predictions and experimental data turns out to be more than satisfactory.

A physically consistent stress-strain model for actively confined concrete

  • Shahbeyk, Sharif;Moghaddam, Mahshid Z.;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • With a special attention to the different stages of a typical loading path travelled in a fluid confined concrete test, this paper introduces a physically consistent model for the stress-strain curve of actively confined normal-strength concrete in the axial direction. The model comprises of the five elements of: (1) a criterion for the peak or failure strength, (2) an equation for the peak strain, (3) a backbone hydrostatic curve, (4) a transient hardening curve linking the point of departure from the hydrostatic curve to the failure point, and finally (5) a set of formulas for the post-peak region. Alongside, relevant details and shortcomings of existing models will be discussed in each part. Finally, the accuracy and efficiency of the proposed model have been verified in a set of simulations which compare well with the experimental results from the literature.

Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length (특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측)

  • Park Seung-Bum;Byun, Joon-Hyung;Ahn, Kook-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress (304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method (HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가)

  • Baek, Seung Yeb
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang;Zhang, Li-Juan;Ji, Xiao-Ming
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-86
    • /
    • 2013
  • For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.