• Title/Summary/Keyword: Point Cloud Processing

Search Result 154, Processing Time 0.023 seconds

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

A study on the 2D floor plan derivation of the indoor Point Cloud based on pixelation (포인트 클라우드 데이터의 픽셀화 기반 건축물 실내의 2D도면 도출에 관한 연구)

  • Jung, Yong-Il;Oh, Sang-Min;Ryu, Min-Woo;Kang, Nam-Woo;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.105-106
    • /
    • 2020
  • Recently, a method of deriving an efficient 2D floor plan has been attracting attention for remodeling of old buildings with inaccurate 2D floor plans, and thus, studies on reverse engineering of indoor Point Cloud Date(PCD) have been actively conducted. However, in the case of a indoor PCD, due to interference of indoor objects, available equipment is limited to Mobile Laser Scanner(MLS), which causes a efficiency reduction of data processing. Therefore, this study proposes an automatic derivation algorithm for 2D floor plan of indoor PCD based on pixelation. First, the scanned indoor PCD is projected on the XY coordinate plane. Second, a point distribution of each pixel in the projected PCD is derived using a pixelation. Lastly, 2 floor plan derivation based on the algorithm is performed.

  • PDF

Design and Implementation of Cloud-based Sensor Data Management System (클라우드 기반 센서 데이터 관리 시스템 설계 및 구현)

  • Park, Kyoung-Wook;Kim, Kyong-Og;Ban, Kyeong-Jin;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.672-677
    • /
    • 2010
  • Recently, the efficient management system for large-scale sensor data has been required due to the increasing deployment of large-scale sensor networks. In this paper, we propose a cloud-based sensor data management system with low cast, high scalability, and efficiency. Sensor data in sensor networks are transmitted to the cloud through a cloud-gateway. At this point, outlier detection and event processing is performed. Transmitted sensor data are stored in the Hadoop HBase, distributed column-oriented database, and processed in parallel by query processing module designed as the MapReduce model. The proposed system can be work with the application of a variety of platforms, because processed results are provided through REST-based web service.

Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption

  • Chung, Jong-Moon;Park, Yong-Suk;Park, Jong-Hong;Cho, HyoungJun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3090-3102
    • /
    • 2015
  • The accuracy of an augmented reality (AR) application is highly dependent on the resolution of the object's image and the device's computational processing capability. Naturally, a mobile smart device equipped with a high-resolution camera becomes the best platform for portable AR services. AR applications require significant energy consumption and very fast response time, which are big burdens to the smart device. However, there are very few ways to overcome these burdens. Computation offloading via mobile cloud computing has the potential to provide energy savings and enhance the performance of applications executed on smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR applications is considered in order to determine optimal offloading points that satisfy the required quality of experience (QoE) while consuming minimum energy of the smart device. AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to determine the optimal AR cloud computational offloading point based on conditions of the smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy savings and processing time are explored also taking network congestion and server load conditions into account.

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

An Approach for Segmentation of Airborne Laser Point Clouds Utilizing Scan-Line Characteristics

  • Han, Soo-Hee;Lee, Jeong-Ho;Yu, Ki-Yun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.641-648
    • /
    • 2007
  • In this study, we suggest a new segmentation algorithm for processing airborne laser point cloud data which is more memory efficient and faster than previous approaches. The main principle is the reading of data points along a scan line and their direct classification into homogeneous groups as a single process. The results of our experiments demonstrate that the algorithm runs faster and is more memory efficient than previous approaches. Moreover, the segmentation accuracy is generally acceptable.

  • PDF

Automatic Extraction of Fractures and Their Characteristics in Rock Masses by LIDAR System and the Split-FX Software (LIDAR와 Split-FX 소프트웨어를 이용한 암반 절리면의 자동추출과 절리의 특성 분석)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Site characterization for structural stability in rock masses mainly involves the collection of joint property data, and in the current practice, much of this data is collected by hand directly at exposed slopes and outcrops. There are many issues with the collection of this data in the field, including issues of safety, slope access, field time, lack of data quantity, reusability of data and human bias. It is shown that information on joint orientation, spacing and roughness in rock masses, can be automatically extracted from LIDAR (light detection and ranging) point floods using the currently available Split-FX point cloud processing software, thereby reducing processing time, safety and human bias issues.

Algorithms for Efficient Digital Media Transmission over IoT and Cloud Networking

  • Stergiou, Christos;Psannis, Kostas E.;Plageras, Andreas P.;Ishibashi, Yutaka;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In recent years, with the blooming of Internet of Things (IoT) and Cloud Computing (CC), researchers have begun to discover new methods of technological support in all areas (e.g. health, transport, education, etc.). In this paper, in order to achieve a type of network that will provide more intelligent media-data transfer new technologies were studied. Additionally, we have been studied the use of various open source tools, such as CC analyzers and simulators. These tools are useful for studying the collection, the storage, the management, the processing, and the analysis of large volumes of data. The simulation platform which have been used for our research is CloudSim, which runs on Eclipse software. Thus, after measuring the network performance with CloudSim, we also use the Cooja emulator of the Contiki OS, with the aim to confirm and access more metrics and options. More specifically, we have implemented a network topology from a small section of the script of CloudSim with Cooja, so that we can test a single network segment. The results of our experimental procedure show that there are not duplicated packets received during the procedure. This research could be a start point for better and more efficient media data transmission.

QSDB: An Encrypted Database Model for Privacy-Preserving in Cloud Computing

  • Liu, Guoxiu;Yang, Geng;Wang, Haiwei;Dai, Hua;Zhou, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3375-3400
    • /
    • 2018
  • With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.

A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP (건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구)

  • Kim, Ji-Eun;Park, Sang-Chul;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5695-5706
    • /
    • 2015
  • Recently adoption of BIM technology for building renovation and remodeling has been increased in construction industry. However most buildings have trouble in 2D drawing-based BIM modeling, because 2D drawings have not been updated real situations continually. Applying reverse engineering, this study analysed the point cloud data structure and the process for guideline of reverse engineering of architectural MEP, and deducted the relating considerations. To active usage of 3D scanning technique in domestic, the objective of this study is to analyze the point cloud data processing from real site with terrestrial LiDAR and the process from data gathering to data acquisition.