• Title/Summary/Keyword: Point Cloud Data

Search Result 505, Processing Time 0.027 seconds

Analysis on the Current Status of the Fourth Industrial Revolution-Oriented Curriculum of the Computer and Software-Related Majors Based on the Standard Classification (표준분류에 기준한 컴퓨터 및 소프트웨어 관련 전공의 제4차 산업혁명중심 교육과정 운영 현황 분석)

  • Choi, Jin-Il;Choi, Chul-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.587-592
    • /
    • 2020
  • This paper analyzed the curriculum of computer and software-related majors educating the core IT-related skills needed for the 4th Industrial Revolution. The analysis was conducted on 158 majors classified as applied software, computer science and computer engineering according to the standard classification of university education units by the Standard Classification Committee of the Korean Council of University Education. The current status of introduction of curricular divided into the fields of Internet of Things(IoT) & mobile, cloud & big data, artificial intelligence(AI), and information security was analyzed among the contents of education in the relevant departments. According to the analysis, an average of 81.6% of the majors for each group of curricular organized related subjects into the curriculum. The Curriculum Response Index for the 4th industrial revolution(CRI4th) by major, calculated by weighting track operations by education sector, averaged 27.5 point out of 100 point. And the IoT & mobile sector had the highest score of 42.3 points.

Three-dimensional Geometrical Scanning System Using Two Line Lasers (2-라인 레이저를 사용한 3차원 형상 복원기술 개발)

  • Heo, Sang-Hu;Lee, Chung Ghiu
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.5
    • /
    • pp.165-173
    • /
    • 2016
  • In this paper, we propose a three-dimensional (3D) scanning system based on two line lasers. This system uses two line lasers with different wavelengths as light sources. 532-nm and 630-nm line lasers can compensate for missing scan data generated by geometrical occlusion. It also can classify two laser planes by using the red and green channels. For automatic registration of scanning data, we control a stepping motor and divide the motor's rotational degree of freedom into micro-steps. To this end, we design a control printed circuit board for the laser and stepping motor, and use an image processing board. To compute a 3D point cloud, we obtain 200 and 400 images with laser lines and segment lines on the images at different degrees of rotation. The segmented lines are thinned for one-to-one matching of an image pixel with a 3D point.

Lightweight Deep Learning Model for Real-Time 3D Object Detection in Point Clouds (실시간 3차원 객체 검출을 위한 포인트 클라우드 기반 딥러닝 모델 경량화)

  • Kim, Gyu-Min;Baek, Joong-Hwan;Kim, Hee Yeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1330-1339
    • /
    • 2022
  • 3D object detection generally aims to detect relatively large data such as automobiles, buses, persons, furniture, etc, so it is vulnerable to small object detection. In addition, in an environment with limited resources such as embedded devices, it is difficult to apply the model because of the huge amount of computation. In this paper, the accuracy of small object detection was improved by focusing on local features using only one layer, and the inference speed was improved through the proposed knowledge distillation method from large pre-trained network to small network and adaptive quantization method according to the parameter size. The proposed model was evaluated using SUN RGB-D Val and self-made apple tree data set. Finally, it achieved the accuracy performance of 62.04% at mAP@0.25 and 47.1% at mAP@0.5, and the inference speed was 120.5 scenes per sec, showing a fast real-time processing speed.

3D Point Clouds Encryption Method and Analysis of Encryption Ratio in Holographic Reconstruction Image (3D 공간정보 암호화 기법과 홀로그래픽 복원영상의 암호화 효율 분석)

  • Choi, Hyun-Jun;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1703-1710
    • /
    • 2017
  • This paper propose a 3D point clouds (depth) security technique for digital holographic display service. Image contents encryption is a method to provide only authorized right owners with the original image information by encrypting the entire image or a part of the image. The proposed method detected an edge from a depth and performed quad tree decomposition, and then performed encryption. And encrypts the most significant block among the divided blocks. The encryption effect was evaluated numerically and visually. The experimental results showed that encrypting only 0.43% of the entire data was enough to hide the constants of the original depth. By analyzing the encryption amount and the visual characteristics, we verified a relationship between the threshold for detecting an edge-map. As the threshold for detecting an edge increased, the encryption ratio decreased with respect to the encryption amount.

Object Classification and Change Detection in Point Clouds Using Deep Learning (포인트 클라우드에서 딥러닝을 이용한 객체 분류 및 변화 탐지)

  • Seo, Hong-Deok;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2020
  • With the development of machine learning and deep learning technologies, there has been increasing interest and attempt to apply these technologies to the detection of urban changes. However, the traditional methods of detecting changes and constructing spatial information are still often performed manually by humans, which is costly and time-consuming. Besides, a large number of people are needed to efficiently detect changes in buildings in urban areas. Therefore, in this study, a methodology that can detect changes by classifying road, building, and vegetation objects that are highly utilized in the geospatial information field was proposed by applying deep learning technology to point clouds. As a result of the experiment, roads, buildings, and vegetation were classified with an accuracy of 92% or more, and attributes information of the objects could be automatically constructed through this. In addition, if time-series data is constructed, it is thought that changes can be detected and attributes of existing digital maps can be inspected through the proposed methodology.

Estimation of Tree Heights from Seasonal Airborne LiDAR Data (계절별 항공라이다 자료에 의한 수고 추정)

  • Jeon, Min-Cheol;Jung, Tae-Woong;Eo, Yang-Dam;Kim, Jin-Kwang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.441-448
    • /
    • 2010
  • This paper estimates the tree height using Airborne LiDAR that is obtained for each season to analyze its influence based on a canopyclosure and data fusion. The tree height was estimated by extracting the First Return (RF) from the tree and the Last Return (LR) from the surface of earth to assume each tree via image segmentation and to obtain the height of each tree. Each data on tree height that is collected from seasonal data and the result of tree height acquired from the data fusion were compared. A tree height measuring device was used to measure on site and its accuracy was compared. Also, its applicability on the result of fused data that is obtained through the Airborne LiDAR is examined. As a result of the experiment, the result of image segmentation for an individual tree was closer to the result of site study for 1 meter interval when compared to the 0.5 meter interval of point cloud. In case of the tree height, the application of fused data enables a closer site measurement result than the application of data for each season.

A Study of 3D Modeling of Compressed Urban LiDAR Data Using VRML (VRML을 이용한 도심지역 LiDAR 압축자료의 3차원 표현)

  • Jang, Young-Woon;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.3-8
    • /
    • 2011
  • Recently, the demand for enterprise for service map providing and portal site services of a 3D virtual city model for public users has been expanding. Also, accuracy of the data, transfer rate and the update for the update for the lapse of time emerge are considered as more impertant factors, by providing 3D information with the web or mobile devices. With the latest technology, we have seen various 3D data through the web. With the VRML progressing actively, because it can provide a virtual display of the world and all aspects of interaction with web. It offers installation of simple plug-in without extra cost on the web. LiDAR system can obtain spatial data easily and accurately, as supprted by numerous researches and applications. However, in general, LiDAR data is obtained in the form of an irregular point cloud. So, in case of using data without converting, high processor is needed for presenting 2D forms from point data composed of 3D data and the data increase. This study expresses urban LiDAR data in 3D, 2D raster data that was applied by compressing algorithm that was used for solving the problems of large storage space and processing. For expressing 3D, algorithm that converts compressed LiDAR data into code Suited to VRML was made. Finally, urban area was expressed in 3D with expressing ground and feature separately.

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

A Study on Update of Road Network Using Graph Data Structure (그래프 구조를 이용한 도로 네트워크 갱신 방안)

  • Kang, Woo-bin;Park, Soo-hong;Lee, Won-gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.193-202
    • /
    • 2021
  • The update of a high-precision map was carried out by modifying the geometric information using ortho-images or point-cloud data as the source data and then reconstructing the relationship between the spatial objects. These series of processes take considerable time to process the geometric information, making it difficult to apply real-time route planning to a vehicle quickly. Therefore, this study proposed a method to update the road network for route planning using a graph data structure and storage type of graph data structure considering the characteristics of the road network. The proposed method was also reviewed to assess the feasibility of real-time route information transmission by applying it to actual road data.

Analysis of statistical models for ozone concentrations at the Paju city in Korea (경기도 파주시 오존농도의 통계모형 연구)

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1085-1092
    • /
    • 2009
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model and Neural Networks (NN) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Paju monitoring site in Korea. In the both ARE model and NN model, seven meteorological variables and four pollution variables are used as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide ($SO_2$), Nitrogen dioxide ($NO_2$), Cobalt (CO), and Promethium 10 (PM10). The result showed that the NN model is generally better suited for describing the ozone concentration than the ARE model. However, the ARE model will be expected also good when we add the explanatory variables in the model.

  • PDF