• Title/Summary/Keyword: Pohoz$\check{a}$aev's-Pucci-Serrin Identity

Search Result 1, Processing Time 0.015 seconds

NONEXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION WITH SOBOLEV-HARDY TERM

  • Choi, Hyeon-Ock;Pahk, Dae-Hyeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.261-269
    • /
    • 2008
  • Let $B_1$ be a unit ball in $R^n(n{\geq}3)$, and $2^*=2n/(n-2)$ be the critical Sobolev exponent for the embedding $H_0^1(B_1){\hookrightarrow}L^{2^*}(B_1)$. By using a variant of Pohoz$\check{a}$aev's identity, we prove the nonexistence of nodal solutions for the Dirichlet problem $-{\Delta}u-{\mu}\frac{u}{{\mid}x{\mid}^2}={\lambda}u+{\mid}u{\mid}^{2^*-2}u$ in $B_1$, u=0 on ${\partial}B_1$ for suitable positive numbers ${\mu}$ and ${\nu}$.

  • PDF