• Title/Summary/Keyword: Pneumatic system

Search Result 547, Processing Time 0.024 seconds

Organic Form Generation Reflecting a Biomimetic Approach in Contemporary Fashion (생체모방 접근법을 반영한 현대 패션의 유기적 형태 생성)

  • Ro, Juhyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.927-943
    • /
    • 2022
  • This study explores the organic form generation method, which reflects the evolving biomimetic approaches converging in fashion technology and considers the characteristics of the organic relationship between the body and the clothing to be represented in contemporary fashion. A literature review on biomimetic architecture and design-related theory and a case study on biomimetic fashion were both conducted. Images, articles, and data related to biomimicry fashion and clothing, including the increase in virtual fashion cases around 2020, were analyzed based on the literature review. Biomimicry was used to derive interdisciplinary similarities in the organic morphogenesis principle, and the result was categorized as a network system, folds and unfolds, pneumatic structures, auxetic growth, and membranes. The biomimetic fashion characteristics, including externalization of the body's interior, expansion of the body structure and silhouette, body protection, independence from the body, and post-human expression through virtualization, were analyzed. Morphogenetic processes performed through biomimetic vision are expected to aid in generating research on the possibility of mass production or popularization in the future through various experimental technical studies.

Fabrication of a Breathing Assist Device for Saxophone Players with Breathing Problems

  • Kato, Tomonori;Ashikari, Tadataka;Matoba, Chikara;Mawatari, Asashi;Thumwarin, Pitak
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.72-76
    • /
    • 2021
  • The aim of this study was to establish a breathing assist system for saxophone players with breathing problems. Although the saxophone is a popular wind instrument with a reed in its mouthpiece, it can be difficult for people with breathing problems to play this instrument, as it requires adequate breath support for deep and even long breaths. To solve this problem, the authors propose a breathing assist device, which functions like a pneumatic master-slave amplifier, for saxophone players with breathing problems. First, the proposed device is fabricated. Second, the effectiveness of the breathing assist device as a master-slave amplifier is confirmed through experiments. Third, the dynamic characteristics of the device are tested up to 10 Hz, and they demonstrate that the device responds well for up to approximately 5 Hz.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Dynamic Characterization of Fall for Development of Fracture Prevention System (골절 방지 시스템의 개발을 위한 낙상 동적 특성 분석)

  • Kim, Seong-Hyun;Kim, Yong-Yook;Kwon, Tae-Kyu;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.811-816
    • /
    • 2007
  • The social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities are increased, the occurrence of falls that could lead to fractures are increased. Falls are serious health hazards to the elderly and we need more thorough understanding of falls including the progress of falls and the impact area in various fall directions. Many of the traditional methods of falls research dealt with voluntary falls by younger subject since older subject can easily get fracture from voluntary falls. So, it has been difficult to get exact data about falls of the elderly. Here, we tried to capture the characteristics of the movements of major joints using three dimensional motion capture system during falls experiments using a moving mattress that can safely induce unexpected falls. Healthy younger subjects participated in the actual falls experiment and the moving mattress was actuated by a pneumatic system. The kinematic parameters such as velocities and accelerations of major segments were imported to a computer simulation environment and falls to hard surfaces were simulated in a computational environment using a realistic human model of aged persons. The simulation was able to give approximations to contact forces which can occur during actual falls.

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Flow Rate Control System Design for the Industrial Valve (산업용 밸브의 유량제어 시스템 설계)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.387-392
    • /
    • 2020
  • This paper proposes a flow-rate control system for industrial valves. Industrial valves are used in piping systems to control the flow rate and pressure. In general, valves used in pipelines are classified into globe valves, butterfly valves, and ball valves according to the shape. Motor, hydraulic, and pneumatic systems are used for operating valves. The flow meter should measure the flow rate when configuring the flow-rate control system. On the other hand, because the flow rate of the valve can be expressed by flow coefficient, a control scheme is proposed using the pressure deviation, which measures at the front and rear of the valve. The transfer function for the valve, according to the control input, was estimated using the signal compression method. Based on the induced transfer function, the disturbance observer was designed to improve the command following the performance of the valve stem. The performance of the proposed control method is compared with the flow-rate control result using the flow meter used.

Implementation of Human Positioning Monitoring Device for Underwater Safety (수중안전을 위한 인체 위치추적 모니터링 장치 구현)

  • Jong-Hwa Yoon;Dal-Hwan Yoon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.225-233
    • /
    • 2023
  • This paper implements a system that monitors human body lifting information in the event of a marine accident. The monitoring system performs ultrasonic communication through a lifting device controller that transmits underwater environment information, and LoRa communication is performed on the water to provide GPS information within 10 km to the control center or mother ship. The underwater lifting controller transmits pneumatic sensor, gyro sensor, and temperature sensor information. In an environment where the underwater conditions increase by one atmosphere of water pressure every 10m in depth, and the amount of air in the instrument decreases by half compared to land, a model of a 60kg underwater mannequin is used. Using one 38g CO2 cartridge in the lifting appliance SMB(Surface Maker Buoy), carry out a lifting appliance discharge test based on the water level rise conditions within 10 sec. Underwater communication constitutes a data transmission environment using a 2,400-bps ultrasonic sensor from a depth of 40m to 100m. The monitoring signal aims to ensure the safety and safe human structure of the salvage worker by providing water depth, water temperature, and directional angle to rescue workers on the surface of the water.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

High Pressure Operation Characteristics of Pilot Scale Entrained-Bed Gasification System Using ABK Coal (ABK탄을 이용한 pilot급 분류층 석탄가스화기 시스템의 고압 운전특성)

  • Chung, Seokwoo;Yoo, Sangoh;Jung, Woohyun;Lee, Seungjong;Yun, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.105.2-105.2
    • /
    • 2010
  • 석탄의 직접 연소 대신 고온/고압의 조건에서 불완전연소 및 가스화 반응을 통하여 일산화탄소(CO)와 수소($H_2$)가 주성분인 합성가스를 제조하여 이용하는 석탄 가스화 기술은 현실적인 에너지원의 확보를 위한 방법인 동시에 이산화탄소를 저감할 수 있는 기술이라 할 수 있다. 따라서, 본 연구에서는 non-slagging 방식의 pilot급 분류층 석탄가스화기를 대상으로 고압 미분탄공급장치, 합성가스 냉각장치, 고온 집진장치 등을 연계하여 상용급 석탄가스기와 유사한 $1,300^{\circ}C$, 20 kg/$cm^2$의 운전조건에서 미분탄의 안정적인 공급을 통한 양질의 합성가스 제조 및 제조된 합성가스의 분기 공급특성 시험을 진행하였다. 그리고, 고압 미분탄공급장치는 공급호퍼에 저장된 미분탄을 고온/고압 조건으로 운전되는 석탄가스화기에 공급하기 위한 설비로서, 이러한 고압 미분탄공급장치를 이용한 기류수송 방식의 미분탄 공급 기술은 가스화기 설계 및 운전제어 기술과 더불어 석탄가스화기 시스템의 안정적 연속운전을 위한 가장 핵심적인 기술 중 하나라고 할 수 있다. 따라서, 본 연구에서는 아역청탄인 인도네시아 ABK탄을 대상으로 향후 dense phase 고압 기류수송을 목적으로 하는 고압 미분탄공급장치의 성능특성을 시험을 진행하였는데, 시험 결과 73 kg/h 조건에서 20 kg/$cm^2$의 가스화기에 대한 안정적인 미분탄 공급특성을 확인할 수 있었으며, 이러한 미분탄 공급 조건에서 CO 40~45%, $H_2$ 16~20%, $CO_2$ 5~8% 조성의 양질의 합성가스를 평균적으로 $230{\sim}50Nm^3/h$ 안정적으로 제조할 수 있었다.

  • PDF

Piezo-Composite Actuator for Control Surface of a Small Unmanned Air Vehicle (소형 무인 비행체 조종면 작동용 압전 복합재료 작동기 연구)

  • Yoon, Bum-Soo;Park, Ki-Hoon;Yoon, Kwang-Joon
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.47-51
    • /
    • 2014
  • The purpose of the present study is to develop lightweight and simple smart actuators in order to replace conventional hydraulic/pneumatic actuators, and to apply the developed actuators to the actuation systems of a small unmanned air vehicle. This research describes the procedures of design, manufacturing of the piezo-composite actuator, and the performance evaluation. From the test results of the developed devices, we found the possibility of piezo-composite actuator could be used as a control surface of a small UAV system. We have designed and manufactured two kinds of piezo-composite actuators, unimorph actuator and bimorph actuator. The manufactured actuators were evaluated through the performance testes. It was found that the bimorph type actuator showed more linear angle change for the same excitation voltage variation than unimorph type. It is expected that piezo-composite actuator has a possibility to be used not only as a control surface of small unmanned flying vehicle but also as a control surface actuator of a guided missile fin through the miniaturization of power supply and control system.