• 제목/요약/키워드: PnAO

검색결과 4건 처리시간 0.02초

Dione Bisoxime 계통의 화합물에 대한 테크네슘표지 원리에 관한 연구 (Tc-99m Labeling of Dione Bisoxime Compounds)

  • 정재민;조정혁;오승준;이명철;정수욱;정준기;이동수;곽철은;이경한;고창순
    • 대한핵의학회지
    • /
    • 제29권1호
    • /
    • pp.110-117
    • /
    • 1995
  • Tc-99m Labeled hexamethylenepropyleneamineoxime ([$^{99m}Tc$]-HMPAO) is a famous amino-oxime compound and is widely used to construct SPECT images of cerebral blood flow. To investigate the relationship between chemical structure and radiolabeling in these kind of diamine-oxime compounds, we synthesized seven compounds by Schiff's base formation and successive reduction with sodium borohydride. They were (RR/SS )-4,8-diaza-3,6,6,9-tetramethylundecane-2,10-dione bisoxime (2), (RR/SS/meso)-4,8-diaza-3,9-dimethy-lundecane-2,10-dione bisoxime (4), (RR/SS/meso)-4,8-diaza-3,10-dimethyldodecane-2,11-dione bisoxime (5), (RR/SS/meso)-4,7-diaza-3,6,6,8-tetramethyldecane-2,9-dione bisoxime (8), (RR/SS/meso)-4,7-diaza-5,6-cyclohexyl-3,8-dimethyldecane-2,9-dione bisoxime (10), (RR/SS/meso)-3,4-bis(1-aza-2-methyl-3-oxime-1-butyl)-benzoic acid (12), and (RR/SS/ meso)-2,3-bis(1-aza-2-methyl-3-oxime-1-butyl) benzophenone (14). Chemical structures of all the synthesized compounds were identified by taking $^1H$ spectrum. Among them, 2 and 4 are propyleneamine oxime (PnAO), 6 is butyleneamine oxime (BnAO) and 8, 10, 12 and 14 are ethyleneamine oxime (EnAO). Each compound (0.5 mg) was incubated with stannous chloride (0.5 g - 8 g), carbonate-bicarbonate buffer (final concentration = 0.1 M, pH 7 - pH 10) and Tc-99m-pertechenate (1 ml). Tc-99m labeling of these compounds were checked by ITLC (acetone), ITLC (normal saline), reverse phase TLC (50 % acetonitrile) and ITLC (ethyl acetate). According to the results, EnAO's were not labeled by Tc-99m in any of above condition. About 11 % of maximum labeling efficiency was obtained with BnAO. However, 4 (PnAO) was labeled with Tc-99m to 85 % which is similar to the labeling efficiency of 2 (HMPAO). Hydrophilic impurity (9 % ) was the most significant problem with the labeling of 4, however, pertechnetate (3 % ) and colloid (3 %) were minor problem. In conclusion, we synthesized seven diamine blsoxlme compounds. Among them, four EnAO compounds were not labeled by Tc-99m. A BnAO was labeled poorly and two PnAO's were labeled well. These labeling can be explained by tertiary structure of their Tc-99m chelate.

  • PDF

A Study of Fecal Calprotectin in Obese Children and Adults

  • Park, Shin Young;Kim, Woo Jin
    • Journal of Obesity & Metabolic Syndrome
    • /
    • 제27권4호
    • /
    • pp.233-237
    • /
    • 2018
  • Background: Obesity is a complex, medical condition causally contributing to many chronic diseases and a number of efforts have been made to find the associated markers for novel prevention and treatment of obesity. Our study was to evaluate the relationship between gut immune response and obesity and overweight with use of fecal calprotectin (FC) both in adult and children groups. Methods: Fecal samples were obtained from 74 subjects: 14 non-obese and overweight children (PN), 13 obese and overweight children (PO), 20 non-obese and overweight adults (AN), and 27 obese and overweight adults (AO). FC was measured using a commercial Legend Max quantitative enzyme-linked immunosorbent assay (BioLegend). Mann-Whitney U-test was used for statistical analysis. Results: Median FC concentration was $7.9{\mu}g/g$ (range, $1.9-28.9{\mu}g/g$) for PN, $5.0{\mu}g/g$ (range, $2.6-29.6{\mu}g/g$) for PO, $9.5{\mu}g/g$ (range, $0.8-28.9{\mu}g/g$) for AN, and $10.0{\mu}g/g$ (range, $1.6-25.6{\mu}g/g$) for AO, respectively. In both adults and children age groups, the FC showed no statistically significant difference between AO and AN or PO and PN. However, FC showed statistically significant difference (P<0.05) between AO and PO while not significant between AN and PN. Conclusion: FC level in AO was significantly higher than that in PO, suggestive of different pathophysiologic mechanism between children obesity and adults obesity.

뇌혈류 영상용 방사성의약품 PRODD의 $^{99m}Tc$ 표지 및 생체내분포 ($^{99m}Tc$ Labeling and Biodistribution of PRODD as a Cerebral Blood Flow Imaging Radiopharmaceutical)

  • 정수욱;정재민;이동수;조정혁;오승준;정준기;이명철;고창순
    • 대한핵의학회지
    • /
    • 제29권3호
    • /
    • pp.328-331
    • /
    • 1995
  • $^{99m}Tc$ labeled PnAO(propylene amine oxime) derivatives have been widely studied as brain perfusion agents. We synthesized and characterized a PnAO derivative, (RR/SS/ meso)-4,8-diaza-3,9-dimethylundecane-2, 10-dione bisoxime(PRODD). Proton-NMR spectroscopy and thin layer chromatography(silica gel) were performed for its characterization. PRODD was labeled with $^{99m}Tc$ using stannous chloride as reducing agent. The labeling efficiency was determined to be about 85%. Brain uptakes of $4.16{\pm}0.42$ %ID/g and $3.24{\pm}0.13$ %ID/g were found after 10min and 30min after intravenous injection. Brain-to-blood ratios were 1.17 and 0.75 at 10 and 30 minutes, which were lower than 1.3 and 1.9 of the ratios with commercial ${\pm}$-HMPAO. Autoradiographs of rat brain sections showed the gray matter to white matter ratios of $1.13{\pm}0.10$ at 30 min after intravenous injection, which was lower than $1.94{\pm}0.19$ of commercial $^{99m}Tc$-HMPAO. With the above findings, we concluded that the lipophilic $^{99m}Tc$-PRODD complex was able to cross the blood-brain barrier, however the complex showed lower uptake than $^{99m}Tc$-HMPAO in mouse or rat brains. We could suggest possibility that PRODD could be used as another $^{99m}Tc$ chelator.

  • PDF

팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구 (Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils)

  • 이윤정;이기택
    • 한국식품과학회지
    • /
    • 제41권3호
    • /
    • pp.231-237
    • /
    • 2009
  • 팜유와 아보카도유를 이용하여 효소적 방법을 통해 trans free margarine stock(TFMS)을 제조하였다. 회분식 반응기(stirred batch type reactor)를 통한 본 반응은 sn-1,3 위치 특이성을 가진 lipozyme RM IM(from Rhizomucor miehei)을 사용하였다. 반응기질 대두극도경화유와 아보카도유 및 팜유는 30:150:120(g)의 비율로 230 rpm, $65^{\circ}C$에서 합성하였으며 이를 통해 이화학적 특성을 분석하였다. 재구성 지질의 DSC 분석 결과 TFMS의 solid fat content(SFC)는 $5^{\circ}C$에서 58.6%, $35^{\circ}C$에서의 약 8.5%로 확인 되었으며 7.3, 23.6, $35.3^{\circ}C$의 DSC 상의 melting point 특성을 나타내었다. TFMS는 C16:0(약 29%)과 C18:1(약 45%)이 주요 지방산으로 확인되었고 ${\Sigma}SFA$는 40.7%이었으며 trans 지방산은 검출되지 않았다. Sn-2 위치에는 주요적으로 C16:0(21.6%)과 C18:1(50.2%)의 지방산 조성이 확인되었다. RP-HPLC를 통해 TFMS를 이루고 있는 TAG의 PN을 확인 하였다. 주요적으로 PN=48이 대부분을 차지하였고 PN=46, PN=50으로 분리되었으며 TFMS의 반응 전과 비교 시 차별적인 TAG peak를 확인할 수 있었다. 한편, ${\alpha}-$, ${\gamma}-$${\delta}$-tocopherol이 각각 5.7, 2.1, 1.7 mg/100 g을 나타냈으며 산가, 요오드가, 비누화가를 통해 TFMS의 이화학적 특성을 확인 할 수 있었다. TFMS를 통해 마가린 제조 시 물성 변화를 고려하여 마가린의 적합한 물성을 지닐 수 있을 것이라 사료된다.