• Title/Summary/Keyword: Ply Angle

Search Result 187, Processing Time 0.023 seconds

A Study on Evaluation of Thermal Conductivity for Carbon -Fiber-Reinforced-Plastics (탄소섬유강화 복합재의 열전도율 평가에 관한 연구)

  • Im, Jae-Gyu;Song, Jun-Hui;Choe, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.553-559
    • /
    • 2002
  • Carbon-fiber which has very small radial dimension makes us difficult to measure it's properties. So in this paper, we suggest a simple method to measure the thermal conductivity of a carbon-fiber's and carbon-fiber-reinforced-plastics(CFRP) laminates. The thermal conductivity of CFRP laminates was measured experimentally at the same time analytically. The experimental model is based on the one-dimensional analysis of fin sample because CFRP laminates has a thin geometric configuration. The analytical model to measure the thermal conductivity of carbon-fiber is expressed by use of mean-field model which is based on Eshelby's elliptical inclusion problem. Therefore the thermal conductivity of angle-ply laminates can be computed by use of effective longitudinal and transverse thermal conductivities of unidirectional composite of the constituents.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.

Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO

  • Topal, Umut;Vo-Duy, Trung;Dede, Tayfun;Nazarimofrad, Ebrahim
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.617-628
    • /
    • 2018
  • This paper deals with the maximization of the critical buckling load of simply supported antisymmetric angle-ply plates resting on Pasternak foundation subjected to compressive loads using teaching learning based optimization method (TLBO). The first order shear deformation theory is used to obtain governing equations of the laminated plate. In the present optimization problem, the objective function is to maximize the buckling load factor and the design variables are the fibre orientation angles in the layers. Computer programming is developed in the MATLAB environment to estimate optimum stacking sequences of laminated plates. A comparison also has been performed between the TLBO, genetic algorithm (GA) and differential evolution algorithm (DE). Some examples are solved to show the applicability and usefulness of the TLBO for maximizing the buckling load of the plate via finding optimum stacking sequences of the plate. Additionally, the influences of different number of layers, plate aspect ratios, foundation parameters and load ratios on the optimal solutions are investigated.

Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method

  • Singhatanadgid, Pairod;Wetchayanon, Thanawut
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.115-136
    • /
    • 2014
  • In this study, an extended Kantorovich method, employing multi-term displacement functions, is applied to analyze the vibration problem of symmetrically laminated plates with arbitrary boundary conditions. The vibration behaviors of laminated plates are determined based on the variational principle of total energy minimization and the iterative Kantorovich method. The out-of-plane displacement is represented in the form of a series of a sum of products of functions in x and y directions. With a known function in the x or y directions, the formulation for the variation of total potential energy is transformed to a set of governing equations and a set of boundary conditions. The equations and boundary conditions are then numerically solved for the natural frequency and vibration mode shape. The solutions are verified with available solutions from the literature and solutions from the Ritz and finite element analysis. In most cases, the natural frequencies compare very well with the reference solutions. The vibration mode shapes are also very well modeled using the multi-term assumed displacement function in the terms of a power series. With the method used in this study, it is possible to solve the angle-ply plate problem, where the Kantorovich method with single-term displacement function is ineffective.

Natural Frequencies of Laminated Composite Plates Attached Point Mass Under an Uniform Axial-Loading (등분포 축하중을 받고 첨가질량이 재하된 적충복합판의 고유진동수)

  • Park, Jae-Sean;Hong, Chang-Woo;Lee, Jung-Ho;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.235-243
    • /
    • 1999
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniformly distributed axial force and attached mass was carried out. Because it is complicated to analysis this type of plate by theory of antisymmetric laminate, possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that was able to neglect self-weight of plate was proposed.

  • PDF

Vibration and Stability Analysis of Composite Spinning Shafts (복합재료 회전축의 진동 및 안정성 해석)

  • Seo, Jung-Seok;An, Chang-Gi;Park, Sang-Yoon;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.510-517
    • /
    • 2015
  • The free vibration and stability analysis of a spinning composite shaft modelled as a thin-walled closed beam is performed for several design parameters, such as ply angle, aspect ratio, and spin speed. The governing equations of spinning shafts based on the Timoshenko beam theory are derived via Hamilton's variational principle. Coriolis acceleration and anisotropy of constituent materials are incorporated in the derivation. The equations of motion are then transformed to the standard form of an eigenvalue problem for free vibration and stability analysis. Analytical results both for uniform circular cylindrical shaft and rectangular cross-section shaft are obtained by using extended Galerkin method, and the results are compared with those from FEM ANSYS analysis for a verification.

A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method (유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구)

  • 김두만;김항욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure (내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • A degenerated cylindrical shell element for modeling glass fiber reinforced plastic pipes is developed and its performance for static structural analysis under internal uniform pressure is evaluated. The element is a nine node degenerated solid shell element with reduced integration technique, addition of nonconforming displacement modes, and assumed strain method to improve convergence of analysis. Several numerical examples are solved and compared with analytical solutions and other F.E.M programs, The results show that the increment of fiber orientation in the GFRP pipes with reference to the longitudinal axis cause less radial displacements and much stiffness in the pipes. This is reasonable since the internal pressure will primarily cause hoop stresses in the ring and 90-angle ply GFRP ring carry these efficiently in pure tension.

  • PDF

Natural Frequencies of Laminated Composite Plates with Attached Mass Under an Uniform Axial-Loading (등분포 축하중을 받고 첨가질량이 재하된 적층복합판의 고유진동수에 관한 연구)

  • Hong, Chang-Woo;Kim, Kyeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.181-190
    • /
    • 2000
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniform axial-loading and attached mass was carried out. Because it is complicated to analyze this type of plate by theory of antisymmetric laminate possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that Was able to neglect self-weight of plate was proposed.

  • PDF

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.