• Title/Summary/Keyword: Plus energy rate

Search Result 66, Processing Time 0.028 seconds

Effects of Frequency of Meals on Energy Utilization and Body Composition of Sheep Ingesting Diets of Equal Amount (급식회수(給食回數)가 면양(緬羊)의 열량대사(熱量代謝) 및 조직(組織)의 화학적성분(化學的成分)에 미치는 영향)

  • Han, In-K.
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.21-28
    • /
    • 1967
  • Two experiments with 32 sheep were conducted to study the effects of feeding the same amount of diet per day at different meal frequencies on ration digestibility, energy utilization, rate of gain, body composition and efficiency of gain. The results obtained are as follows: (1) The ingestion by sheep of the same amount of feed per day in 8 meals, 1 meal plus 7 ruminal inflations-deflations, and in 1 meal caused no different effect in the digestibility of the nutrients and energy, or the ME value of the diet. (2) Heat production per unit of metabolic size per unit of dietary intake was markedly lower for sheep ingesting 8 meals or administered 1 meal plus 7 ruminal inflations-deflations per day than for sheep fed 1 meal per day. (3) Body weight gain was significantly greater by sheep fed 8 meals per day or 1 meal plus 7 ruminal inflations-deflations than by those fed 1 meal per day. However, the gain in DM and energy of wool was not affected by frequency o( meals. (4) Sheep ingesting 8 meals or administered 1 meal plus 7 ruminal inflations-deflations per day gained body protein, fat and energy at a more rapid and efficient rate than sheep fed 1 meal per day. (5) Sheep fed 8 meals per day gained greater proportion of fat, protein and ash in the gained portion of the bodies than did 1 meal fed sheep. (6) An attempt was made to establish the possible explanations by which the frequency of ingesting meals exerts its effects.

  • PDF

Application of the Solar Chimney System for Improving the Thermal Environment in Winter (겨울철 건물 열환경 개선을 위한 태양굴뚝 시스템의 응용)

  • Oh, Ju-Hong;Kim, Eui-Jong;Lee, Hyun-Soo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2015
  • In this study, the solar chimney, one of the passive solar systems, is proposed as a method to improve the thermal environment of northern zones in buildings. As this well-known system has rarely been used in building projects, an adequate application of the system is proposed in this paper: the solar chimney system is designed to meet the required ventilation rate and consequently to reduce the ventilation load in the northern part of a building. To investigate such a possibility, a numerical model for the system is developed, and results of numerical tests are used for energy simulations. The results were taken into account for test simulations in EnergyPlus. As a result, approximately 75% of the volumetric ventilation rate required in the north zone could be supplied with the air volume acquired through the system and the monthly mean load was reduced by 29.5%, from 1.584 kWh to 1.117 kWh. The analyses of hourly mean heating and ventilation load over the heating period indicated that the system was very effective at around 13:00. Results show that 33% reduction in the ventilation load and 17% in the heating load for the north zone could be acquired through this system.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

Field Tests of DC 1500 V Stationary Energy Storage System

  • Lee, Hanmin;Kim, Gildong;Lee, Changmu;Joung, Euijin
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.124-128
    • /
    • 2012
  • The ESS(energy storage system, here after) for a DC 1500V was developed in 2009. A ESS was installed on the track of Daejeon HRT in 2010. The advantage of the ESS is that it can save the energy and plus stable the catenary voltage. This paper presents the energy saved by the ESS in Daedong substation. When the ESS is on/off, the field tests are performed.

A Elicitation Method of Optimum Slat Angle of Fixed Venetian Blind Considering Energy Performance and Discomfort Glare in Buildings (건물에너지성능 및 불쾌현휘를 고려한 고정형 블라인드의 최적 슬랫각도 도출 방법에 관한 연구)

  • Park, Jang Woo;Yoon, Jong Ho;Oh, Myung-Hwan;Lee, Kwang-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.107-112
    • /
    • 2012
  • The purpose of this study is to determine the optimum slat angle of the venetian blind which was applied at an outer skin of a curtain-wall system. The evaluation of the blind slat angle was performed in terms of the comfortable visual environment and decreased energy consumption. The office building prototype was considered for the analysis and simulation variables include application of blind, blind slat angle and dimming control of lighting. The annual energy consumption and incidence rate of discomfort glare were analyzed using EnergyPlus which is developed by the U. S. Department of Energy for the detailed building energy simulation. As a result, it turns out that when the blind (reflectance: 0.5) was installed, the annual energy consumption was greater than that of the base model. However, when the dimming control was applied, the maximum energy saving of 16.3% could be achieved at a slat angle of $0^{\circ}$. In addition, in case of the base model, the incidence rate of discomfort glare was 84%, while the case of the blind with the slat angle of $0^{\circ}$ showed that the incidence rate of discomfort glare was 42.4%. Consequently, the results showed that the slat angle of $55^{\circ}$ with dimming control was the optimum strategy for the comfortable visual environment and decreased energy consumption.

Changes in Feed Value of Barley and Pea by Different Seeding Rates and Cutting Dates in Mixed Sowing Cultivation (보리와 완두의 혼파재배에서 혼파비율과 예취시기에 따른 사료가치의 변화)

  • Oh, Tae-Seok;Kim, Chang-Ho;Lee, Hyo-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This study carried out to find out feed value of barley plus pea mixture with different ratio and cutting date to got basic information when introduced the mixture as new cropping system in middle part of Korean peninsular. Dry matter (DM) yield increased as barley seeding rate was higher and showed the highest yield in the plots with barley 85% plus 15% ratio when harvested on May 16. There was no different in crude protein, available protein and digestible protein cutting on April 25 in every mixture, but the content increased with higher pea mixture rate after May 2. The content of acid detergent fiber (ADF) and neutral detergent fiber (NDF) increase coincided with higher barley rate and late cutting dates. But relative feed value (RFV) resulted in opposite trend. Higher pea ratio influenced increased content of total digestible nuterients (TDN), but decreased before May 9 cutting and increased after the next cutting regime. There was no statistical difference in P and Mg between sowing rate, but Ca increased at higher pea ratio and P, Ca, K decreased in all plots as harvests were delayed. The content of estimated net energy (ENE), net energy maintenance (NEM) and net energy gain (NEG) significantly increased with higher pea rate and earlier cutting. But net energy lactation (NEL) was no significant differences between seeding rates and cutting dates. In conclusion, mineral yield such as P, Ca, K and Mg showed the highest yield at barley plus pea ratio of 75 : 25 and energy yield of ENE, NEL, NEM, NEG and TDN was the highest at 85 to 15 mixture plots and DM yield, TDN yield, mineral yield such as P, Ca, K and Mg and energy yield of ENE, NEL, NEM, NEG were the highest on each treatment cutting on May 16.

Existing Building Energy Simulation Method Using Calibrated Model by Energy Audit Data (성능진단 데이터로 보정된 모델을 이용한 기존건축물의 에너지시뮬레이션 기법)

  • Kong, Dong-Seok;Kim, Du-Hwan;Chang, Yong-Sung;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.231-239
    • /
    • 2014
  • This paper represents a method of existing building energy simulation using energy audit data. Energy audit must be carried out for reasonable analysis, because characteristics of existing buildings such as efficiency of fan, pump, flow rate, pressure, COP and operating schedule could be changed during the building operation. These building characteristics should be measured to estimate actual energy consumption of the existing building. In this study, we conducted energy audit and calculated energy savings for a 7-stories building as a case-study. The energy audit data were used to calibrate the building model of EnergyPlus simulation. Baseline model validated according to M&V guideline index. As a result, building characteristics are significant parameters making a big impact on energy savings in existing buildings.

A Study on the Energy Efficiency Improvement according to Operation Condition of Solar Thermal System in Office Buildings (사무소 건물의 태양열 시스템 운영조건 변화에 따른 에너지 효율 향상에 관한)

  • Jung, Young-Ju;Kim, Seok-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.109-115
    • /
    • 2014
  • The supply rate of renewable energy has been increasing under the influence of an energy scarcity. Government has supported the use of renewable energy by government subsidies. The operation of renewable may not been operating appropriately, although increasing the use of renewable energy. We found out some problems of the operation of renewable energy and offered some improvements. This research proposes the efficient operation method for the solar thermal system, and proposed operation method was compared and evaluated with existing operation strategy after selecting one building installed solar thermal system. Recently, the interest to renewable energy has increased because of the environmental issues and energy crisis. However the utilization of the renewable energy system is low because of the use of renewable energy system and existing renewable energy system independently, although supply rate of renewable system is increasing. Especially, in the case of solar thermal system heating load is not responsible for the load of hot water supply in many cases. Therefore, suggesting efficient operation plans and evaluations of the energy consumption and efficiency of a solar thermal system is needed.

A Study on the Supply obligations allotment rate of New Renewable Energy in Indoor Gymnasiums with the Application of a Daylighting System (집광채광시스템을 적용한 실내체육관의 신재생에너지 공급의무 분담률에 관한 연구)

  • Park, Yun-Ha;Lee, Yong-Ho;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.27-39
    • /
    • 2015
  • Under the goal of analyzing the compulsory supply share of new renewable energy according to the application of a daylighting system to indoor gymnasiums, this study conducted analysis of energy consumption and operation schedule at three indoor gymnasiums in the nation through a survey. The investigator did an Energy Plus simulation on Building A based on the analysis results and analyzed the supply share of new renewable energy in the saving effects of lighting energy according to the application of a daylighting system. As a result, When 92 prism daylighting system were installed in the upper ceiling of a stadium, they were able to meet the criteria for the minimum illumination for official games(Min : 600㏓) and optimum illumination for general games and recreations, thus saving lighting energy during the daytime(09:00~17:00). The resulting saving effects of lighting energy amounted to 44.4% for official games, 57.6% for general games, and 66.7% for recreations. In addition, the daylighting systems had a compulsory supply share of new renewable energy at 2.04% for official games, 2.75% for general games, and 2.62% for recreations, recording an average compulsory supply share of 2.5%.