• Title/Summary/Keyword: Plunger stroke

Search Result 22, Processing Time 0.026 seconds

simulation of the fuel-injection system in a diesel engine (디이젤 기관 연료분사계의 시뮬레이션)

  • 채재우;오신규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-54
    • /
    • 1985
  • Recently, the problem of exhaust gas pollution is increasingly being aggravated by the active use of the Diesel engine. For the fuel-injection system which affects the composition of exhaust gas from the Bosch type single-hole nozzle in the Diesel engine, a mathematical model was set up to study pressure variations in the high pressure pipe, the injection rate, and the needle lift. The fundamental equations of the mathematical model have been solved by the Newton Raphson Method applying the Finite Diffrence Method. The effective stroke of the injection pump plunger due to a change in engine rpm was calculated by the measurement of Control Rack, Pinion, and Plunger sizes and by the use of Characteristic Curve of Governor. The computed results for the pressure variations in the high pressure pipe and needle lift at 800 rpm and 1000 rpm are in good agreement with experimental ones in general. By a developed program, the effects of other various parameters will by calculated for the performance of the fuel-injection system.

  • PDF

A Study on Inequality Rate of Integrated Cylinder Lubricator System with an Accumulated Distribution by the Electronic Control in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 일체형 전자제어 축압분배 실린더 주유기 시스템의 주유 불균일률에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Kim, Su-Min;Bae, Chang Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.123-133
    • /
    • 2014
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of improving the lubricating system to lubricate cylinder parts optimally by an electronically controlled quill device according to changes of engine load and revolution speed. In order to apply the developed accumulating distributor to an integrated cylinder lubricator by the electronically controlled system as the third research stage, the lubricating system is improved in the electronically controlled quill device with a solenoid valve. In this study, the effects of lubricator revolution speed, driving pressure(or plunger stroke) and cylinder back pressure on oil feed rate and lubrication inequality rate are investigated by using the integrated cylinder lubricator system with an accumulated distribution by the electronic control(I.C.S.), and the oil feed rate and lubrication inequality rate of I.C.S. are compared with those of the motor-driven cylinder lubricator by the electronically controlled quill system equipped with an accumulating distributor(E.D.S.). It is found that the oil feed rate of I.C.S. is smaller than that of E.D.S. due to the reduction of delivery velocity by the higher delivery pressure, and the variances of lubrication inequality rate for I.C.S. have become smaller than those of E.D.S. as the driving pressure in all experimental conditions increases, except for the driving pressure of 26 bar(plunger stroke 2 mm) at the cylinder lubricator speed of 120 rpm.

Development of New Semi-solid Method and Practical Application to Bearing Bracket (신 반응고 슬러리의 개발과 베어링 브라켓에 대한 적용)

  • Sim, Jae-Gi;Moon, Jun-Young;Kim, Jae-Min;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.173-178
    • /
    • 2007
  • The bearing bracket, which has produced by the squeeze casting for the high strength in lightweight part of automobile, was developed by the rheocasting process using the H-NCM slurry. Compared with the squeeze casting, the rheocasting process has some merits such as shortening cycle-time, reducing total weight, and increasing productivity. In this study, partial feeding test was carried out by controlling plunger stroke length and compared with semisolid simulation. Optimal casting parameters such as injection speed and stroke variations were established. Sound products with integral microstructure were obtained by the H-NCM slurry and X-ray analysis also showed the integral condition throughout the entire parts.

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

The Effect of the Gate Shape on the Microstructure of the Grain Size Controlled Material (게이트 형상이 결정립 제어 소재의 미세조직에 미치는 영향)

  • Jung Y.S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.49-56
    • /
    • 2005
  • In the semi-solid die casting process, an important thing is the flow behavior of semi-solid materials. The flow patterns of the semi-solid material can make the defects during die filling. To control the flow patterns is very important and difficult. In this paper, the flow behavior of the semi-solid A356 alloy material during die filing at various die gate shapes has been observed with the grain size controlled material. The effect of the gate shape on the die filling characteristics was investigated. The filling tests in each plunger stroke were experimented, and also simulated on the semi-solid material die casting process by MAGMAsoft. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation has been investigated.

A Development of Solenoid Valve for Satellite Propulsion System (위성추진시스템 솔레노이드 밸브 개발)

  • Kim, Kyung-Sik;Baek, Ki-Bong;Park, Eun-Joo;Cho, Seung-Hwan;Kim, Su-Gyeom
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.456-459
    • /
    • 2011
  • The Dual-type Solenoid Valve was developed for a domestic production of a fuel-supply valve on the satellite attitude control thruster system. The satellite valve using a hydrazine as a fuel must fulfill the cycle life, shock, vibration and the environment of an extremely low temperature In addition to the basic performance of the response time, mass flow and leakage etc.. in this paper, the design, production and performance experiment using the nitrogen pneumatic equipment were conducted.

  • PDF

Shape Optimization of DC Solenoid Valve to Minimize the Time of Action Using Response Surface Method (반응표면법을 이용한 최소동작시간을 갖는 DC 솔레노이드 밸브의 형상 최적 설계)

  • Yoon, He-Sung;Hwang, In-Sung;Kim, Dong-Soo;Yun, So-Nam;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.449-458
    • /
    • 2006
  • In general, a DC solenoid valve is evaluated by the performances such as the attraction force at maximum and minimum strokes, temperature rising, power consumption and time of action. The importance of each performance may be different according to the specific application purpose. When the temperature rising and power consumption are fixed, however, the performance of DC solenoid valve is usually evaluated by the attraction force at maximum and minimum strokes and time of action. In this paper, the shape of the pole face of plunger and core is optimized to increase the attraction force at maximum stroke, and thereby to minimize the time of action. For the shape optimization, (1+1) evolution strategy is incorporated with the response surface method(RSM) and finite element method(FEM).

A Design of On/Off Type Solenoid Actuator for Valve Operation (밸브 구동용 개폐식 솔레노이드 액추에이터의 설계)

  • Sung, B.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.24-32
    • /
    • 2009
  • For a design of on/off solenoid actuator for valve actuating, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can be achieved through many repeated experiments. In addition, in present on/off type solenoid actuator field, the smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we derived the governing equations for optimal design of on/off solenoid actuator for valve actuating and developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

Dynamic Characteristic Analysis of Permanent Magnetic Actuator with Multi-stage Coils for Vacuum Circuit Breaker (진공 차단기용 다단계 코일 영구 자석형 조작기의 동작 특성 해석)

  • Shin, Dong-Kyu;Kang, Jong-Ho;Bae, Chae-Yoon;Park, Sang-Hoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.61-63
    • /
    • 2005
  • In this paper, a new type of permanent magnetic actuator (PMA) with multi-stage coils is proposed. Although the conventional type of PMA has many advantages, it cannot be applied in the high voltage circuit breakers due to its short stoke length. The new type of PMA has long stroke length by using multi-stage coils, so it can be applied as an actuator for the high voltage circuit breakers. Dynamic characteristics are calculated by the finite element method (FEM), equation of electric circuit and dynamic equation. The position of plunger and the current of coils in case of the actuator applied in 38kV, 40kA vacuum circuit breaker are presented.

  • PDF

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.