• 제목/요약/키워드: Plume Radiation

검색결과 56건 처리시간 0.018초

한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발 (A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base)

  • 김성룡;고주용;김인선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.507-514
    • /
    • 2012
  • 한국형 발사체의 플룸 형상과 플룸 복사열 해석을 위해 NASA LRB 플룸 복사 모델을 구현하였으며 열해석 소프트웨어인 Thermal Desktop에서 형상화하여 실제 복사 열전달을 계산하여 NASA 예측결과와 비교하였다. 계산 결과 NASA 예측과 비슷한 수준의 정확도를 나타냈으며 한국형 발사체에 적용 가능한 수준의 플룸 모델 형상을 제안하였다.

  • PDF

유한체적법에 의한 로켓플룸 저부가열의 열복사 모델 (Thermal radiation model for rocket plume base heating using the finite-volume method)

  • 김만영;백승욱
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3598-3606
    • /
    • 1996
  • The finite volume method for radiation is applied to investigate a radiative heating of rocket base plane due to searchlight and plume emissions. Exhaust plume is assumed to absorb, emit and scatter the radiant energy isotropically as well as anisotropically, while the medium between plume boundary and base plane is cold and nonparticipating. Scattering phase function is modelled by a finite series of Legendre polynomials. After validating benchmark solution by comparison with that of previous works obtained by the Monte-Carlo method, further investigations have been done by changing such various parameters as plume cone angle, scattering albedo, scattering phase function, optical radius and nozzle exit temperature. The results show that the base plane is predominantly heated by the plume emission rather than the searchlight emission when the nozzle exit temperature is the same as that of plume.

레이저 가공시 에너지 전달과 Plume 효과 (Laser- Plume Effects on Radiation Energy Transfer in Materials Processing)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

배기 후류의 적외선 방사 특성 모사를 위한 수치적 연구 (A NUMERICAL SIMULATION OF INFRARED RADIATION OF EXHAUST PLUME)

  • 장우;양영록;박경린;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.422-425
    • /
    • 2010
  • The infrared radiation of exhaust plume was investigated numerically by a finite volume method (FVM) with anisotropic scattering particles. The exhaust plume is considered to absorb, emit and scatter radiant energy isotropically as well as anisotropically. The spatial and spectral distribution characteristics were obtained for the detection wavelength with $2.7{\mu}m$. The radiative intensities were presented for the different detective direction.

  • PDF

고속 홀로그래피에 의한 용접 플룸 거동의 가시화 (Visualization of weld plume using high-speed holography)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF

킥 모터 지상 시험의 플룸 복사 열유속 측정 (Measurement of Radiative Heat Flux of Kick Motor at Ground Test)

  • 김성룡;최상호;고주용;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.440-443
    • /
    • 2008
  • Plume radiation has been measured during ground tests of KSLV-I kick motor in order to predict the thermal load on the equipment around the kick motor at flight. The measuring positions are the kick motor base, and the measured heats were about 2${\sim}$5 w/cm$^2$. The measured heat showed a lot of shot fluctuation in their values, and the radiative heats at the latter half of time are higher than those of the first half. A plausible explanation for these phenomena was given as the variation of alumina particles with time. The radiative heats along the plume axis were also measured recently at 8 positions with 1.5m radius from plume axis, but only the initial parts of the results could be acceptable because the sensor were damaged by the accumulated heat. The strongest heat occurred at the middle of the plume, which can be explained with different view factors. Despite of the plausible explanation, it seems to need more analysis because the plume structure such as temperature, alumina particle, after burning has not been revealed until yet. The measure heat flux has been reflected in the prediction of the plume radiation at high altitude where the kick motor operates.

  • PDF

형상 계수를 이용한 알루미나 입자구름의 열복사 예측 기법 연구 (A Study of Thermal Radiation from The Alumina Particle Cloud in The Plume Using View Factor Method)

  • 고주용;김인선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2044-2049
    • /
    • 2007
  • In order to predict the thermal radiation induced from alumina particle cloud in the plume of solid propellant motor, view factor method is applied to space shuttle SRB and the result is compared with that of monte carlo method. For this purpose, radiative characteristics, such as particle cloud temperature distribution, effective emissivity or emissive power of particle cloud are studied. In the case of effective emissivity, inverse wavelength method is applied and plume reduction characteristic length is used for emissive power distribution. As a result, thermal radiation using view factor method gives more conservative results than that using monte carlo method. So it can be used for preliminary design of thermal protection system.

  • PDF

대기로 확산된 방사성물질로부터 방출되는 감마선에 의한 피폭선량을 계산하기 위한 근사화 방법 (An Approximation Method for the Estimation of Exposed dose due to Gamma - rays from Radioactive Materials dispersed to the Atmoshere)

  • 김태욱;박종묵;노성기
    • Journal of Radiation Protection and Research
    • /
    • 제15권2호
    • /
    • pp.51-56
    • /
    • 1990
  • 대기로 방출된 방사성 물질의 대기 확산 형태를 파스킬의 대기안정도에 따른 모델인 타원형 근사화 모델로 가정하고 인체가 받을 수 있는 감마선에 의한 피폭선량률을 계산하였다. 이 결과를 대기 확산 기본 모델인 가우스플룸 모델을 적용하여 계산한 결과 및 이미 발표된 원형 근사화 모델에 의한 결과와 비교하여 보았다. 제시한 타원형 근사화 모델을 이용하여 피폭선량을 계산한 결과는 가우스플룸 모델의 결과와 비슷하고, 원형 근사화 모델의 경우보다 오차가 적었으며, 동시에 기본 모델인 가우스 플룸 모델과 비교할 때 1/40 정도의 계산 시간이 걸렸다.

  • PDF

화학 평형과 열복사를 포함한 로켓 플룸 유동 해석 (Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation)

  • 신재렬;최정열;최환석
    • 한국추진공학회지
    • /
    • 제9권1호
    • /
    • pp.35-45
    • /
    • 2005
  • 여러 고도에서 화학 반응과 열복사 효과가 로켓 플룸 유동에 미치는 영향을 살피기 위한 수치 연구를 수행하였다. 압축성 유동의 Navier-Stokes 방정식을 유한 체적법에 근거한 완전 내재적 TVD코드로 해석하였으며, 탄화수소 혼합물의 자세한 열화학적 속성을 고려한 화학 평형과 광학적으로 두꺼운 매체의 열복사를 유동 해석 코드에 포함하였다. 지상 마하수 0, 고도 5.06 km에서 마하수 1.16 그리고 17.34 km에서 마하수 2.90로 비행하는 등유 연료 로켓의 플룸 유동을 해석하였다. 해석 결과는 서로 다른 고도 조건에서의 플룸의 구조와 함께 화학 반응과 복사의 영향을 보여 주었다. 추진 성능과 기저부 열차단의 측면에서, 화학 반응에 의한 배출가스의 온도 상승은 특히 고고도에서 무시할 수 없음을 알 수 있었다.

평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석 (Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation)

  • 신재렬;최정열;최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF