• 제목/요약/키워드: Plug-in electric vehicles

검색결과 60건 처리시간 0.045초

전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작 (Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles)

  • 김종수;최규영;정혜만;이병국;조영진
    • 전력전자학회논문지
    • /
    • 제15권5호
    • /
    • pp.369-375
    • /
    • 2010
  • 본 논문은 전기자동차 (Electric Vehicles, EVs) 및 플러그인 하이브리드 자동차 (Plug-In Hybrid Electric Vehicles, PHEVs)용 리튬 이온 (Li-Ion) 배터리 충전을 위한 3.3 kW급 차량 탑재형 (On-Board) 충전기 하드웨어의 설계 및 제작에 대하여 기술한다. 차량 실장 특성을 고려하여 부하직렬공진형 dc-dc 컨버터를 적용하고, 80-130kHz의 고주파 스위칭 및 ZVS (Zero-Voltage Switching) 기법을 통해 수동소자의 크기를 최적화하여 5.84L, 5.8kg의 저부피, 경량을 달성한다. 전자부하를 대상으로 정전류 (Constant Current, CC) 및 정전압 (Constant Voltage, CV) 제어를 수행하여 92.5%의 고효율 획득 및 성능을 검증한다.

전기자동차의 충전부하 모델링 및 충전 시나리오에 따른 전력계통 평가 (Evaluation of the Charging effects of Plug-in Electrical Vehicles on Power Systems, taking Into account Optimal Charging Scenarios)

  • 문상근;곽형근;김진오
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.783-790
    • /
    • 2012
  • Electric Vehicles(EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) which have the grid connection capability, represent an important power system issue of charging demands. Analyzing impacts EVs charging demands of the power system such as increased peak demands, developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes proposed to determine optimal demand distribution portions so that charging costs and demand can possibly be managed. In order to solve the problems due to increasing charging demand at the peak time, alternative electricity rate such as Time-of-Use(TOU) rate has been in effect since last year. The TOU rate would in practice change the tendencies of charging time at the peak time. Nevertheless, since it focus only minimizing costs of charging from owners of the EVs, loads would be concentrated at times which have a lowest charging rate and would form a new peak load. The purpose of this paper is that to suggest a scenario of load leveling for a power system operator side. In case study results, the vehicles as regular load with time constraints, battery charging patterns and changed daily demand in the charging areas are investigated and optimization results are analyzed regarding cost and operation aspects by determining optimal demand distribution portions.

직렬형 플러그인 하이브리드 전기 버스의 엔진 구동 전략에 따른 시뮬레이션 기반 연비 분석 (Analysis of Fuel Economy for Series Plug-in Hybrid Electric Bus according to Engine Operation Strategy Based on Simulation)

  • 김진성;이치범;박영일
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.102-107
    • /
    • 2014
  • Because of high oil prices and emission gas problems, many governments tighten regulation of fuel economy and emission gas. For Passenger car, there are many researches for plug-in hybrid electric vehicles and they are being manufactured. On the other hand, there are few researches for plug-in hybrid electric bus that is heavy commercial vehicle. In this study, analysis of fuel economy for series plug-in hybrid electric bus according to engine operation strategy based on simulation is conducted. Forward simulator is developed using Autonomie. Engine operation strategies consist on constant engine operation strategy and engine on/off operation strategy. Considering the engine operation strategy, results of vehicle speed, engine operating points and fuel economy are obtained and analyzed. As a result, engine on/off operation strategy has more advantage than constant engine operation strategy in terms of fuel economy.

친환경 버스 도입에 따른 경제성 분석에 관한 연구 (대구광역시 중심으로) (A Study on the Economic Analysis of Introducing Battery-Based Eco Bus: Case Study of Daegu City, South Korea)

  • 박재석;김성열;김동민
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Renewable energy sources has drawn considerable attention as clean energy sources because of changing public attitudes regarding greenhouse gas and fine dust. Recently, in this respect, the government provides the drivers of electric vehicles with various benefits such as tax reduction, financial incentives and free parking from the public to the private sector. Plug-in electric vehicles are the most common in the private sector. Otherwise, different types of battery-based buses in the public sector are being developed, and there are three main types of charging: plug-in, battery swapping and wireless. Therefore, economic assessment of charging types in each bus route is required in order to facilitate the use of battery-based buses instead of the existing CNG buses. In this paper, net present value(NPV) and B/C ratio of charging types are evaluated in consideration of the bus schedule, the cost of charging station, and the life cycle of battery, etc. per each bus route. In case study, main bus routes in Daegu City are simulated with the proposed evaluation method to validate the eco-bus project.

전기자동차 시장 및 배터리 관련 기술 연구 동향 (Electric Vehicle Market and Battery Related Technology Research Trends)

  • 김양화;임재완;박규열;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권4호
    • /
    • pp.362-368
    • /
    • 2019
  • Electric vehicles contribute greatly to energy conservation, $CO_2$ reduction and energy security through high fuel economy and various electric sources. Electric cars have a huge economic impact. More than 14 million hybrid electric cars have been sold worldwide. More than 3 million plug-in electric vehicles have been sold worldwide. The environmental impact depends greatly on the amount of national power generation, and as the electric grid becomes more and more carbon-intensive, countries are increasingly adopting hybrid and electric vehicles. Electricity is expanding beyond cars. Electric buses, trucks, and ships have similar benefits.

전기자동차 핵심 기술 동향 (Technical Trend of Electric Vehicle)

  • 주경진;장성록;;임근희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.947_948
    • /
    • 2009
  • In an attempt to minimize the air pollution caused by CO2, $NO_X$x, and $SO_X$ and the fuel cost, the auto industries and researchers recently are looking into replacing the diesel and gasoline cars with hybrid electric vehicles, plug-in electric vehicles, or battery powered electrical vehicles. This paper reports the technical status of the primary components such as batteries, motors, power control units and auxiliary parts to be used for electric vehicles.

  • PDF

주행 사이클을 고려한 IPMSM의 효율 및 출력 밀도 개선으로 경량 전기 자동차의 주행거리 연장 (Range Extension of Light-Duty Electric Vehicle Improving Efficiency and Power Density of IPMSM Considering Driving Cycle)

  • 김동민;정영훈;임명섭;심재한;홍정표
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2197-2210
    • /
    • 2016
  • Recently, the trend of zero emissions has increased in automotive engineering because of environmental problems and regulations. Therefore, the development of battery electric vehicles (EVs), hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs), and fuel cell electric vehicles (FCEVs) has been mainstreamed. In particular, for light-duty electric vehicles, improvement in electric motor performance is directly linked to driving range and driving performance. In this paper, using an improved design for the interior permanent magnet synchronous motor (IPMSM), the EV driving range for the light-duty EV was extended. In the electromagnetic design process, a 2D finite element method (FEM) was used. Furthermore, to consider mechanical stress, ANSYS Workbench was adopted. To conduct a vehicle simulation, the vehicle was modeled to include an electric motor model, energy storage model, and regenerative braking. From these results, using the advanced vehicle simulator (ADVISOR) based on MATLAB Simulink, a vehicle simulation was performed, and the effects of the improved design were described.

Li-ion batteries, its applications and research trends

  • Lim, Jinsub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • Growing market of electric vehicles such as hybrid, plug-in hybrid, and bare electric vehicles in the world is accelerating the significance of Li-ion batteries as a renewable green energy. According to such market flow, the developing components such as cathode, anode, electrolyte, and separator, composing the Li-ion batteries, is significantly important tasks for the commercialization. In particular, development of the cathode material having high capacity and stable thermal stability is essential for long-distance electric vehicle in the near future. Herein we introduce various applications of Li-ion batteries such as portable electronics, electric vehicles, and energy storage system, and also its research trend, in particular on the cathode materials.

  • PDF

SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석 (The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance)

  • 이대흥;정종렬;박영일;차석원
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.

전력계통 제약을 고려한 플러그인 전기자동차 충전계획 수립 (Charging Schedule Establishment of PEVs considering Power System Constraints)

  • 권한나;국경수
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.632-639
    • /
    • 2018
  • 최근 플러그인 전기자동차에 대한 적극적인 보급 정책이 추진되고 있으나 플러그인 전기자동차는 전력계통에 직접 연계되어 충전수요를 공급받기 때문에 충전수요의 집중도에 따라서는 전력계통의 설비확충이 요구될 수도 있다. 반면 전력계통의 설비확충은 많은 시간과 투자가 소요되어 현실적으로 제한될 수밖에 없기 때문에 기존의 전력망을 효율적으로 이용하여 플러그인 전기자동차의 충전수요를 안정적으로 공급하는 것은 플러그인 전기자동차의 보급 확대에도 중요한 요소라고 할 수 있다. 따라서 본 논문에서는 주어진 전력계통에서 선로조류와 모선전압과 같은 제약조건을 만족하면서 플러그인 전기자동차의 충전수요를 공급하기 위한 충전계획 수립방안을 제안한다. 이를 위해 자동차의 주행 패턴과 충전 요금제를 기준으로 플러그인 전기자동차 충전수요의 요구량과 충전 시작시간을 전기자동차별로 모델링 한 후 이를 전력계통 모델에 연계하여 조류계산을 계산하여 전력계통의 운전 상태를 모의하였다. 또한 선로의 전력조류와 모선의 전압에 대한 제약 조건의 만족 여부를 확인하며 제약조건에 위반이 발생하는 경우 이를 완화하기 위해 제약조건에 직접 관련된 플러그인 전기자동차의 충전수요를 조정하여 계통제약의 만족여부를 재확인하는 과정을 반복함으로써 주어진 전력계통의 제약조건을 만족할 수 있는 플러그인 전기자동차의 충전계획을 수립하였다.