• Title/Summary/Keyword: Plug-in electric vehicles

Search Result 60, Processing Time 0.034 seconds

Performance tests result and consideration for AUTS(Advanced Urban Transit System) (차세대전동차 완성차시험 결과 및 고찰)

  • Hong, Jai-Sung;Kim, Gil-Dong;Lee, Chang-Mu;Won, Jong-Un;Lee, An-Ho;Sung, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1092-1096
    • /
    • 2011
  • The "standard regulation" of the vehicles from "urban transit law" are being adopted to electric multiple unit in domestic. In the standard regulation, there are two types for EMU. One is heavy EMU for Seoul. The other is large EMU for Pusan, Daegu, Gwangju, Daejeon, Incheon. Korea Railroad Research Institute, with the assistance of the Ministry of Land, Transport and Maritime Affairs, "advanced EMU development project" are progressed, and 6th year started at September, one unit to six cars is completed. Now "urban transit vehicle performance tests are on the current progress. The main characteristics of AUTS(Advanced Urban Transit System) are as follows. One inverter control one motor, DDM(Dircet Drive Motor), no driving gear, plug door and steps, mounting and maintenance costs down, passenger convenience improvement. This paper describes the key features the next generation EMU, and performance test results, and the commercial success method of national R&D business.

  • PDF

Evaluation for Charging effects of Plug-in Electrical Vehicles in Power System considering Optimal Charging scenarios (전기자동차의 충전부하특성 모델링 및 충전 시나리오에 따른 계통평가)

  • Moon, Sang-Keun;Kim, Sung-Yul;Kin, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.298-299
    • /
    • 2011
  • The impacts of EV charging demands on power system such as increased peak demands may be developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes are proposed to determine optimal demand distribution portions so that charging costs and demands can be managed optimally. There are two optimization methods which have different effects on the outcome. These focus either on the Electric vehicle customer side (cost optimization) or the System Operator side (Load-weighted optimization).

  • PDF

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Battery Charging Strategies for PHEVs using Motor Inductance and Multi-Function Inverter (인버터 및 모터 인덕턴스를 이용한 PHEV 배터리 충전 기법)

  • Woo, Dong-Gyun;Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Byoung-Kuk;Kang, Gu-Bae
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.335-336
    • /
    • 2010
  • 본 논문에서는 Plug-in Hybrid Electric Vehicles (PHEVs)의 배터리 충전을 위해 필요한 추가적인 충전기 없이, 구동모터의 인덕턴스와 구동 드라이버인 3상 인버터를 이용하는 배터리 충전 기법을 소개한다. 모터의 인덕턴스를 승압용 에너지 저장장치로 사용하고 인버터의 스위칭 제어를 통해 부스트 컨버터로 사용하여 별도의 충전기를 제거함으로써 충전장치의 크기 및 단가를 저감할 수 있다. 상세한 유형별 이론적 분석과 시뮬레이션 결과를 제시하여 제안된 충전기법의 타당성을 검증한다.

  • PDF

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

A Study on the Application of Cross-Certification Technology for the Automatic Authentication of Charging Users in ISO 15118 Standard (ISO 15118 충전 사용자 자동인증을 위한 교차인증서 기술의 적용에 관한 연구)

  • Lee, Sujeong;Shin, Minho;Jang, Hyuk-soo
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 2020
  • ISO 15118 is an international standard that defines communication between electric vehicles and electric vehicle chargers. Plug & Charge (PnC) was also defined as a technology to automatically authenticate users when using charging services. PnC indicates automatic authentication technology where all processes such as electric vehicle user authentication, charging and billing are automatically processed. According to the standard, certificates for chargers and CPSs (Certificate Provisioning Services) should be under the V2G (Vehicle to Grid) Root certificate. In Korea, the utility company operates its own PKI (Public Key Infrastructure), making it difficult to provide chargers under the V2G Root Certificate. Therefore, a method that can be authenticated is necessary even when you have different Root Certificates. This paper proposes to apply cross-certificate technology to PnC authentication. Automatic authentication of Cross Certification is to issue a cross-certificate of the Root CA and include it in the certificate chain to proceed with automatic authentication, even if you have different Root certificates. Applying cross-certificate technology enables verification of certificates under other Root certificates. In this paper, the PnC automatic authentication and cross certificate automatic authentication is implemented, so as to proceed with proof of concept proving that both methods are available. Define development requirements, certificate profiles, and user authentication sequences, and implement and execute them accordingly. This experiment confirms that two automatic authentication are practicable, especially the scalability of automatic authentication using cross-certificate PnC.

Nano-scale Design of electrode materials for lithium rechargeable batteries

  • Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.72-72
    • /
    • 2012
  • Lithium rechargeable batteries have been widely used as key power sources for portable devices for the last couple of decades. Their high energy density and power have allowed the proliferation of ever more complex portable devices such as cellular phones, laptops and PDA's. For larger scale applications, such as batteries in plug-in hybrid electric vehicles (PHEV) or power tools, higher standards of the battery, especially in term of the rate (power) capability and energy density, are required. In PHEV, the materials in the rechargeable battery must be able to charge and discharge (power capability) with sufficient speed to take advantage of regenerative braking and give the desirable power to accelerate the car. The driving mileage of the electric car is simply a function of the energy density of the batteries. Since the successful launch of recent Ni-MH (Nickel Metal Hydride)-based HEVs (Hybrid Electric Vehicles) in the market, there has been intense demand for the high power-capable Li battery with higher energy density and reduced cost to make HEV vehicles more efficient and reduce emissions. However, current Li rechargeable battery technology has to improve significantly to meet the requirements for HEV applications not to mention PHEV. In an effort to design and develop an advanced electrode material with high power and energy for Li rechargeable batteries, we approached to this in two different length scales - Atomic and Nano engineering of materials. In the atomic design of electrode materials, we have combined theoretical investigation using ab initio calculations with experimental realization. Based on fundamental understanding on Li diffusion, polaronic conduction, operating potential, electronic structure and atomic bonding nature of electrode materials by theoretical calculations, we could identify and define the problems of existing electrode materials, suggest possible strategy and experimentally improve the electrochemical property. This approach often leads to a design of completely new compounds with new crystal structures. In this seminar, I will talk about two examples of electrode material study under this approach; $LiNi_{0.5}Mn_{0.5}O_2$ based layered materials and olivine based multi-component systems. In the other scale of approach; nano engineering; the morphology of electrode materials are controlled in nano scales to explore new electrochemical properties arising from the limited length scales and nano scale electrode architecture. Power, energy and cycle stability are demonstrated to be sensitively affected by electrode architecture in nano scales. This part of story will be only given summarized in the talk.

  • PDF

Battery Charge and Discharge Optimization for Vehicle-to-grid Regulation Service (전력 보조서비스 제공을 위한 전기자동차 충/방전 최적화)

  • Kim, Wook-Won;Shin, Hong-Yul;Kim, Jin-O;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1033-1038
    • /
    • 2014
  • Electric vehicles should be connected to power system for charge and discharge of battery. Besides vehicle's battery is charged for a power source, it is also reversibly possible to provide power source from battery to power system. Researches on battery usage for regulation resources have been progressed and could cause cost increase excessively because they distribute regulation capacity equally without considering the battery wear cost of SOC, temperature, voltage and so on. This causes increase of grid maintenance cost and aggravate economical efficiency. In this paper it is studied that the cost could be minimized according to the battery condition and characteristic. The equation is developed in this paper to calculate the possible number of charge and discharge cycle, according to SOC level and weighting factors representing the relation between battery life and temperature as well as voltage. Thereafter, the correlation is inferred between the battery condition and wear cost reflecting the battery price, and the expense of compensation is decided according to the condition on battery wear-out of vehicle. In addition, using realtime error between load and load expectation, it is calculated how much regulation capacity should be provided.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.