• Title/Summary/Keyword: Plug-flow system

Search Result 64, Processing Time 0.025 seconds

Photocatalysis of Sub-ppm-level Isopropyl Alcohol by Plug-flow Reactor Coated with Nonmetal Elements Irradiated with Visible Light

  • Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.419-425
    • /
    • 2012
  • This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow reactor irradiated by 8-W daylight lamp or visible light-emitting-diodes (LEDs). In addition, the generation yield of acetone during photocatalytic processes for IPA at sub-ppm levels was examined. The surface characteristics of prepared S- and N-$TiO_2$ photocatalysts were analyzed to indicate that they could be effectively activated by visible-light irradiation. Regarding both types of photocatalysts, the cleaning efficiency of IPA increased as the air flow rate (AFR) was decreased. The average cleaning efficiency determined via the S-$TiO_2$ system for the AFR of 2.0 L $min^{-1}$ was 39%, whereas it was close to 100% for the AFR of 0.1 L $min^{-1}$. Regarding the N-$TiO_2$ system, the average cleaning efficiency for the AFR of 2.0 L $min^{-1}$ was above 90%, whereas it was still close to 100% for the AFR of 0.1 L $min^{-1}$. In contrast to the cleaning efficiencies of IPA, both types of photocatalysts revealed a decreasing trend in the generation yields of acetone with decreasing the AFR. Consequently, the N-$TiO_2$ system was preferred for cleaning of sub-ppm IPA to S-$TiO_2$ system and should be operated under low AFR conditions to minimize the acetone generation. In addition, 8-W daylight lamp exhibited higher cleaning efficiency of IPA than for visible LEDs.

Development of a Small Floating Outboard Type Water-Jet Propulsion System (부유식 일체형 소형워터제트 추진시스템 개발)

  • Jeong, Jae Hoon;Yi, Chung Seob;Lee, Chi Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • This paper presents the development of a floating outboard type of compact water jet propulsion system. The planning case of the water jet system is developed by performing precision processing after manufacturing FRP (Fiber Reinforced Plastics) from plug mold casting. This system is composed of an intake, impeller, diffuser, reverse bucket, and main shaft. In addition, a rebuilt engine was applied through marine engineering. The water jet propulsion system performance was verified to discharge a maximum $0.29m^3/s$ of flow rate and 37 m/s of flow velocity in a test pool on land. A field test was performed by installing the water jet propulsion device on board a ship that was tested off the coast of Korea. The weight of the hull, engine, and other equipment was approximately 1.2 tons, and the sailing speed was a maximum 22 knots at 3,600 rpm.

Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components (축류 압축기 블레이드 손상시 터빈부품에 미치는 영향)

  • Kang, M.S.;Yun, W.N.;Kim, K.Y.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

Development Study on Variable Nozzle For Hypersonic Air Breathing Engine

  • Kojima, Takayuki;Taguchi, Hideyuki;Kobayashi, Hiroaki;Fukiba, Katsuyoshi;Sato, Tetsuya;Hatta, Hiroshi;Goto, Ken;Koyanagi, Jun;Aoki, Takuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.492-498
    • /
    • 2008
  • In this paper are described recent studies about variable nozzles, that are a rectangular type nozzle and an axisymmetric type nozzle, of the precooled turbojet engine(S-engine) which are developed for the demonstration of the key technologies for the propulsion system of the hypersonic airplane and the first stage propulsion of the TSTO space plane. For the rectangular nozzle, three types of C-shaped carbon/carbon composite cowls which includes subscale model of the precooled turbojet engine are fabricated and the fine attachment to the ramp is confirmed. For the firing of the S-engine, stainless steel cowl with concrete heat insulator are fabricated and tested for 20 sec. Axisymmetric variable plug nozzle which is made of C/C material is fabricated and pressurized by the cold flow test. The axisymmetric plug nozzle can be operative up to 0.57 MPa of nozzle inlet pressure.

  • PDF

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Establishment of Ultrahigh Vacuum Standard down to $10^{-10}$ torr Range ($10^{-10}$ torr까지의 초고진공 표준 확립)

  • Hong, Seung-Su;Im, Jae-Yeong;Park, Jae-Hong;Sin, Yong-Hyeon;Lee, Cheol-Ro;Jeong, Gwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.139-144
    • /
    • 1993
  • The dynamic calibration system which can calibrate the ultrahigh vacuum pressure down to $10^{-10}$torr has been fabricated. The production and control of minute flow of $10^{-6}~10^{-9}$torr L/s range is done by a porous plug connected to the high vacuum standards system. The base pressure of the UHV standards system down to $10^{-11}$torr range was obtained by refrigerator type cryopump, whose pumping speed is known to be constant. By using the UHV standards system, 2 extractor gauges and 1 nude ion gauge were calibrated and their linearities and scatterings were studied.

  • PDF

Modeling and Analysis of a Gas Sweeping Process for Polycarbonate Polymerization

  • Kim, Dae-Hyung;Ha, Kyoung-Su;Rhee, Hyun-Ku;Song, Kwnag-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.100.3-100
    • /
    • 2001
  • This article deals with the development of a mathematical model for the finishing polycarbonate polymerization process using a horizontal rotating disk-ring reactor with counter-current gas sweeping and the performance analysis of the reactor system by using the model. Here we intend to propose a model describing the reactor system consisting of two phases, in which by-product phenol is removed from the polymer of high molecular weight compatible with the products of commercial grades. The vapor phase is represented by a tanks-ln-series model while the polymer melt phase is regarded as a plug flow reactor.

  • PDF

Numerical Simulation on Particle Dispersion in Axisymmetric Sudden-Expansion by Tracer Method (입자추적법에 의한 축대칭 급확대부의 입자확산현상 수치해석)

  • Park, Ounyoung;Yang, Hee Sung;Yim, Chung Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.766-774
    • /
    • 2017
  • Software has been developed for simulating particle dispersion in a circular pipe with sudden-expansion, which models the fuel feeding system of a combustor that uses metal powder like aluminum as fuel. The Lagrangian based discrete tracer point method was employed for a plug flow of particles that satisfies local turbulent velocity fluctuations. A radial velocity component was created to improve the flow turning outwards in the recirculation zone. The particle distribution patterns from both with and without the component were directly compared with the experiments near the reattachment.

  • PDF

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.