재생 가능한 자원인 동식물성 기름을 원료로 제조되는 수송용 연료 바이오디젤은 낮은 대기오염물질 배출과 $CO_2$ Neutral 특성으로 환경친화적인 연료로 인정을 받으며 전세계적으로 그 생산량이 급격히 증가하고 있다. 대부분의 상용화 공정은 염기촉매를 이용한 전이에스테르화 반응에 근거하고 있으며 높은 생산성을 위해 연속 공정을 채택하고 있다. 원료유 중의 유리지방산(free fatty acid, FFA)은 염기 촉매와 반응하여 지방산염(Soap)과 수분을 생성하며 반응촉매의 투입양을 증가시카고 반응 후에 글리세롤과 지방산 메틸에스테르와의 분리를 어렵게 만든다. 높은 수율과 후속공정의 부하를 줄이기 위해서는 식물성 원료유 중의 FFA는 고체 산촉매 하에서 메탄올과 에스테르화 반응시켜 전환 제거되어야 한다. 본 연구에서는 고체산 촉매인 Amberlyst-15을 충전한 4단 PBR(Packed Bed Reactor, 충전율 60%(v/v))에서 반응시간과 반응온도에 따른 대두원유의 전처리 효율을 조사하였으며 최적 전처리 조건을 도출하였다. 최적 전처리 조건에서 대두원유는 초기 산가 1.6에서 0.4-0.6으로 연속 전처리할 수 있었다. 본 연구에서는 연속 흐름 반응기인 PFR(Plug Flow Reactor)와 4단 CSTR(Continuous Stirred Tank Reactor)에서 균질계 촉매인 KOH 존재하에 대두유와 메탄올과의 전이에스테르화 반응 특성을 조사하였으며 각 연속 반응시스템에서 최적 운전 조건을 도출하였다. PFR 반응기에서 반응온도, 반응시간, 반응물 흐름방향, static mixer(SM) 개수에 따른 반응특성을 조사한 결과, PFR에서의 최적 반응조건은 하향류 흐름 방향과 3개의 SM를 설치한 조건에서 반응시간 5.8분, 반응온도 90$^{\cdot}C$, 메탄올:오일 몰비 9:1, KOH 농도 0.8%로 도출되었다. CSTR 반응기에서는 반응온도와 체류시간에 따른 반응특성을 조사하였으며 최적반응 조건으로 반응온도 80$^{\cdot}C$, 메탄올/오일 몰비 9:1, KOH 농도 0.8%, 체류시간 18.4분, 교반속도 250rpm로 조사되었다.
본 연구에서는 고밀집 섬유체에 의한 정적 액-액 접촉기에 대한 이론적 모델링을 통하여 섬유체 접촉기 내부에서의 물질 이동과정과 각 상에서의 축 방향 농도분포 해석이 수행되었고, 여러 운전 조건하에서 출구 농도를 예측하여 실험치와 비교하였다. 본 섬유체 액-액 추출기는 그 구조적 특성 때문에 축 방향 분산이 없는 플러그 흐름 모델로 완벽하게 묘사될 수 있었으며 data fitting을 통해 결정되어 모델식에 적용된 물질전달 계수와 섬유체 추출기 축 방향 반위 길이 당 물질전달 면적의 곱의 항인 $k_a{\sigma}$은 그 섬유체 추출기의 고유 특성 값으로 사용될 수 있었고, 그 값은 약 0.0327cm2/sec이었다.
희박 예혼합 가스터빈 연소기에서 배출되는 NOx, CO 와 같은 오염물질을 예측하기 위해서 화학반응기 네트워크 모델을 개발했다. 본 연구에서는 CHEMKIN 코드와 4 가지 NO 생성 메커니즘을 포함한 GRI 3.0 메탄-공기 연소 메커니즘을 이용해서 가스터빈의 부하조건을 변화시키며 NOx 및 CO 배출의 예측을 수행하였다. 모델의 검증을 위해서 계산된 결과를 모사연소기의 실험 데이터와 비교하였다. 여러부하조건에 따른 4 가지 NO 경로의 기여도를 조사하였다. 또한 인젝터의 질량유동 및 당량비의 불균일성이 NOx 배출이 끼치는 영향을 고찰하고 10ppm 이하의 저 NOx 연소기 개발을 위한 저감 방법을 제안했다.
핸드폰 충전기 내 커패시터의 전해액이 전원 입력단자로 누출되고 PCB 기판에 트래킹이 발생하여 탄화도전로가 형성되는 것을 확인하였다. 트래킹이 발생하는 원인을 구조적으로 분석한 결과, 전원 입력단자와 PCB 기판이 커넥터를 이용하여 직결되는 경우에 발생하였다. 커패시터에서 누출된 전해액이 전원입력단자로 흘러 들어가는 양이 많을수록, 전원입력단자의 플러그 핀 사이에 설치된 격벽의 높이가 낮을수록 트래킹 발생율이 높았다. 이에 따라 충전기 내 트래킹 발생율을 낮추기 위해서는 누출된 전해액이 전원입력단자로 흘러 들어가지 않도록 커패시터에 격벽을 설치하거나, 전원입력단자에 설치된 격벽의 높이를 높일 필요가 있다. 또한, 전원 연결단자와 맞닿아 있는 PCB기판의 형태를 ${\Pi}$로 변경한다면 트래킹 발생율이 더욱 줄어들 것으로 판단된다.
To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.
In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.
Removal of ammonia using the porous ceramic biofilter inoculated with earthworm casts was characterized. By assuming a plug air flow in the biofilter and applying the Michaelis-Menten equation, the maximum removal rate of $NH_3$ was $280.7g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.0g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $30^{\circ}C$. $NH_3$ removal rate was increased as temperature increases from $15^{\circ}C$ to $35^{\circ}C$. The maximum removal rate was $285.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.8g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $35^{\circ}C$. At $15^{\circ}C$, the $NH_3$ removal rate was $122.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($8.1g-N{\cdot}kg^{-1}{\cdot}d^{-1}$). When 210 ppm $NH_3$ was supplied to the biofilter at space velocity of $220h^{-1}$, the removal efficiency of $NH_3$ at 15, 25, 30 and $35^{\circ}C$ was 80, 90, 95, and 96%, respectively. The removal rate of the ceramic biofilter was 3 to 15 times higher than other biofilters comparing the removal efficiency of $NH_3$ per unit volume of carrier. This result indicates that earthworm casts and porous ceramics are very good inoculum source and carrier, respectively, for the $NH_3$-degrading biofilter.
유입관성에 의한 유체혼합뿐 아니라 입구온도의 변화까지 고려된 성층축열조의 충전과정 모델에 대하여 해석적 근사해를 제시하였다. 해석모델은 깊이가 일정한 완전혼합 및 압출유동영역으로 구성되며, 입구온도의 변화는 중첩의 원리에 근거하여 계단함수로 근사화하였다. 완전혼합영역의 과도온도를 구한 후 함수형태에 따라 구분하고, 각각을 경계조건으로 하는 압출유동영역의 온도분포를 잘 정의된 함수의 항으로 유도하였다. 결과적으로 이들의 일차결합이 압출유동영역에 대한 최종해이다. 근사해의 타당성 및 결과의 유용성은 입구온도가 선형적으로 증가하는 경우에 대한 엄밀해와의 비교를 통하여 검증하였다. 계단수의 증가에 따라 근사해는 엄밀해로 급속히 접근하며, 유한한 수의 계단에 의한 근사해도 광범위한 혼합깊이에 대하여 엄밀해와 잘 일치한다. 또한, 혼합깊이가 클수록 소수의 계단에 의한 근사해로도 의미있는 예측결과를 얻을 수 있었다.
The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.