• Title/Summary/Keyword: Plug in vehicle

Search Result 92, Processing Time 0.026 seconds

Design and Implementation of High Efficiency 3.3kW On-Board Battery Charger for Electric Vehicle (전기자동차용 고효율 3.3kW On-Board 배터리 충전기 설계 및 제작)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Jung, Hye-Man;Lee, Byoung-Kuk;Cho, Young-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.190-191
    • /
    • 2010
  • 본 논문은 전기자동차 (Electric Vehicles, EVs) 및 플러그인 하이브리드 자동차 (Plug-In Hybrid Electric Vehicles, PHEVs)용 리튬 이온 (Li-Ion) 배터리 충전을 위한 3.3 kW급 차량 탑재형 (On-Board) 충전기 하드웨어의 설계 및 제작에 대하여 기술한다. 차량 실장 특성을 고려하여 부하직렬공진형 dc-dc 컨버터를 적용하고, 80-130kHz의 고주파 스위칭 및 ZVS (Sero-Voltage Switching) 기법을 통해 수동소자의 크기를 최적화하여 5.84L, 5.8kg의 저부피, 경량을 달성한다. 전자부하를 대상으로 정전류 (Continuous Current, CC) 및 정전압 (Continuous Voltage, CV) 제어를 수행하여 93%의 고효율 획득 및 성능을 검증한다.

  • PDF

On-board charger equipped with new power factor corrected circuit for plug-in hybrid electric vehicle (새로운 역률보상회로를 적용한 플러그인 하이브리드 전기차 탑재용 완속 충전기)

  • Kim, Seong-hye;Lee, Ju-young;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.140-141
    • /
    • 2012
  • 본 논문은 새로운 역률보상회로를 적용한 플러그인 하이브리드 전기 자동차 탑재형 완속 충전기(On-Board Charger, OBC)를 제안한다. 제안하는 완속 충전기용 역률보상회로 (Power Factor Correction, PFC)는 기존의 부스트 컨버터를 기본으로 하는 역률보상회로와 동일한 개수의 회로 부품과 입 출력전압 관계를 가진다. 회로 구조상 전파 정류된 DC 전압을 저장하는 입력 커패시터와 입력 인덕터의 에너지가 저장되는 출력 커패시터가 직렬 결합되어 DC-link 전압을 형성하므로 출력 커패시터의 동작전압(Working voltage)을 낮출 수 있어 단가절감이 가능하다. 제안된 역률보상 회로를 적용한 플러그인 하이브리드 전기 자동차 탑재형 완속 충전기에 대한 동작 특성을 해석하고 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Electric Vehicle Market and Battery Related Technology Research Trends (전기자동차 시장 및 배터리 관련 기술 연구 동향)

  • KIM, YANGHWA;LIM, JAEWAN;PARK, GYUYEOL;LIM, OCK TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.362-368
    • /
    • 2019
  • Electric vehicles contribute greatly to energy conservation, $CO_2$ reduction and energy security through high fuel economy and various electric sources. Electric cars have a huge economic impact. More than 14 million hybrid electric cars have been sold worldwide. More than 3 million plug-in electric vehicles have been sold worldwide. The environmental impact depends greatly on the amount of national power generation, and as the electric grid becomes more and more carbon-intensive, countries are increasingly adopting hybrid and electric vehicles. Electricity is expanding beyond cars. Electric buses, trucks, and ships have similar benefits.

Test Method of Communication Reliability based on HPGP between PEV and EVSE (전기차와 충전기 간 HPGP 기반 통신 신뢰성 테스트 방안)

  • Choi, Byeong-Gon;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • Smart Grid is a next-generation intelligent grid to optimize energy efficiency by integrating information and communication technologies to the existing power grid as a two-way exchange of information. HPGP communication standard for smart grid implementation has been developed for the emerging smart energy, home automation, electric vehicle communications applications. HPGP communication standard has the advantage of reducing cost and power consumption. Also, it can be interoperated with the previous HPAV communication standard. For the introduction of a new communication standard, the analysis of the reliability and interoperability verification is required. In this paper, we present sniffer test method as reliability test method about power line communication between PEV(Plug-in Electric Vehicle) and EVSE(Electric Vehicle Supply Equipment). Power line communication between PEV and EVSE is one of the most important Smart Gird applications. Also, we analyzed sniffer test results about power line communication based on HPGP between PEV and EVSE by using QCA7000 device, AVitar and Tool kit.

Investigating the Impacts of Different Price-Based Demand Response Programs on Home Load Management

  • Rastegar, Mohammad;Fotuhi-Firuzabad, Mahmud;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1125-1131
    • /
    • 2014
  • Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.

PFC and Zero Torque Control of SRM for EV Battery Charging (EV용 충전 인덕터용 PFC 및 제로 토크제어)

  • Rashidi, A.;Namazi, M.M.;Saghaian-nezhad, S.M.;Lee, D.H.;Ahn, J.W
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

A Study on the Fuel Injection System for Optimizing Reduction of HC Emission (HC저감용 최적 연료분사 시스템에 관한 연구)

  • Lee, K.H.;Lee, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.146-156
    • /
    • 1995
  • Growing international concern about environmental issues in recent years has led to new proposals for strengthening exhaust emission standards and fuel economy requirements throughout the world. The low emission vehicle(LEV) standards drawn up by the California Air Resources Board(CARB) in the U.S.A are noticeably stringent To cope with this regulation, a reduction of HC emission is the most important challenge for the automotive industry because HC emission levels are severer than any other components emission levels. In this paper, the apparatus for visulalizing the wall film flow in a intake manifold and the spark plug with optical fiber for detecting the signal from diffusion flame are developed to mal,e the HC formation mechanism clear. High speed camera system is also used to elucidate the correlation wall film flow and the diffusion flame. Using these methods, the effect of fuel injection systems such as injection direction, spray angle, atomised injection on HC emission levels is investigated. Consequently, the optimal fuel injection conditions for minimizing the wall film flow and reducing the HC emission are found through this research.

  • PDF

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Developing a Hybrid Web-based GIS for Improving Access to Distributed Spatial Data and Spatial Modeling Tools (분산형 공간모델링을 구현하기 위한 하이브리드형 웹기반 GIS의 개발)

  • Jun, Byong-Woon;Park, Chan-Suk;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.61-72
    • /
    • 2000
  • The maturation of the Web technology has reshaped the ways in which data are accessed, disseminated, and shared. Thanks to its popularity along with the advance of spatial information technology, four major changes have been further made in traditional geographic information systems (GIS) in relation to access to data, distribution of data, access to GIS functionality, and visualization of multimedia data. Although access to and dissemination of spatial data over the Web has in recent years been addressed in the literature, little research effort has addressed the issue of access to and processing of GIS analysis functions over the Web. This research explores the potential use of Web-based GIS in improving accessibility to distributed spatial data and spatial modeling tools. A prototype Web-based GIS developed in this study focuses on Web-based location-allocation modeling for spatial decision support, and employs a hybrid approach that uses the Arc/Info software as a GIS server and CGM viewer as a client-side plug-in. This research shows that Web-based GIS is a useful vehicle in conducting spatial modeling in the particular user community. In addition, this study represents the possibility of Web-based GIS in developing open spatial decision supporting systems.

  • PDF