• Title/Summary/Keyword: Plow

Search Result 125, Processing Time 0.028 seconds

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

Strength analysis of the driving shift gears for a 67 kW class agricultural tractor according to tire type

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Lee, Nam Gyu;Moon, Seok Pyo;Jeon, Hyeon Ho;Choi, Young Soo;Kim, Taek Jin;Kim, Yong Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1147-1158
    • /
    • 2020
  • The purpose of this study was to measure the engine torque and rotational speed of a 67 kW class agricultural tractor according to tire type during plow tillage and to analyze the gear strength of the driving shift for the tractor. A field test was performed under the condition with a single tire (Test A) and dual tires (Test B) to increase the ground width of the rear tires. A load monitoring system was developed, and the engine torque and rotational speed were measured using controller area network (CAN) communication. The engine torque and rotational speed during plow tillage were calculated as the equivalent torque and speed using Palmgren Miner's rule. As a result, the equivalent torque and speed in Test A and Test B were 181.0 Nm and 1,913 rpm and 206.1 Nm and 2,130 rpm, respectively. As the ground width of the rear tire was increased, the bending stress in Test B was about 9.9 to 10.5% higher than that of the Test A, and the contact stress was about 4.6 to 4.9% higher than that of the Test A. Under all conditions, the safety factor for the bending and contact stress was 1 or more. Thus, the driving shift gears for the dual tire type are considered safe.

Analysis of Emissions of Agricultural Tractor according to Engine Load Factor during Tillage Operation (엔진 부하율에 따른 트랙터 경운 작업 시 배기가스 분석)

  • Lee, Jun Ho;Jeon, Hyeon Ho;Baek, Seung Yun;Baek, Seung Min;Kim, Wan Soo;Siddique, Md. Abu Ayub;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.54-61
    • /
    • 2022
  • This is a basic study analyzing emissions of an agricultural tractor during tillage operations. In this study, CO, THC, NOx, and PM considered as emission factor were analyzed during plow and rotary tillage operation by the tractor. Engine torque and rotational speed were measured through ECU. Engine power was calculated using engine torque and rotational speed. The emissions was calculated based on the number of units, rated power, load factor, and operating time. Results showed that the load factor was calculated almost twice, which was higher than 0.48. It was also observed that the emission of the tractor was variable for different agricultural operations because tractor loads were different based on operations. There was a difference in emissions due to differences in plow and rotary working hours. To estimate the emission of agricultural tractor based field operations in detail, it is necessary to consider TAF (Transient Adjustment Factor) and DFA (Deterioration factor). In the future, TAF and DFA will be considered to estimate emissions of the agricultural tractor. Finally, results of this study can contribute to the literature to estimate tractor emissions accurately.

Design Verification of an E-driving System of a 44 kW-class Electric Tractor using Agricultural Workload Data (농작업 부하데이터를 활용한 44 kW급 전기구동 트랙터의 E-driving 시스템 설계 검증)

  • Baek, Seung-Yun;Baek, Seung-Min;Jeon, Hyeon-Ho;Lee, Jun-Ho;Kim, Wan-Soo;Kim, Yong-Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • The aim of this study was to verify an E-driving system of a 44 kW-class electric tractor using agricultural workload data. Workload data were acquired during field test (plow tillage, rotary tillage, loader operation, field driving, asphalt driving) using a conventional tractor with a load measurement system. These workload data were converted to data of a 44 kW-class tractor based on the load factor of the engine. These data were used to verify the design of the E-driving system of an electric tractor. High-load operations such as plow tillage, rotary tillage, and loader operation could be performed at stage L and stage M. High-speed operation (asphalt driving) could be effectively performed at stage H using a rated rotational speed of the motor. As a result, the E-driving system of the electric tractor was possible to perform all major agricultural operations according to gear stages of range shift. Based on results of this research, we plan to develop an electric tractor equipped with an E-driving system and conduct research on actual vehicle verification in the future.

Prediction of Draft Force of Moldboard Plow according to Travel Speed in Cohesive Soil using Discrete Element Method (이산요소법을 활용한 점성토 환경에서의 작업 속도에 따른 몰드보드 플라우 견인력 예측)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In the field of agricultural machinery, various on-field tests are conducted to measure design load for optimal design of agricultural equipment. However, field test procedures are costly and time-consuming, and there are many constraints on field soil conditions due to weather, so research on utilizing simulation to overcome these shortcomings is needed. Therefore, this study aimed to model agricultural soils using discrete element method (DEM) software. To simulate draft force, predictions are made according to travel speed and compared to field test results to validate the prediction accuracy. The measured soil properties are used for DEM modeling. In this study, the soil property measurement procedure was designed to measure the physical and mechanical properties. DEM soil model calibration was performed using a virtual vane shear test instead of the repose angle test. The DEM simulation results showed that the prediction accuracy of the draft force was within 4.8% (2.16~6.71%) when compared to the draft force measured by the field test. In addition, it was confirmed that the result was up to 72.51% more accurate than those obtained through theoretical methods for predicting draft force. This study provides useful information for the DEM soil modeling process that considers the working speed from the perspective of agricultural machinery research and it is expected to be utilized in agricultural machinery design research.

Analytical Study on Compressible Plow through Abrupt Enlargement and Contraction (급축소/확대관을 지나는 압축성 유동의 해석적 연구)

  • 김희동;김태호;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • The empirical factor and reaction force based on published data were involved to investigate compressible flows through sudden enlargement and sudden contraction passages. Analytical solutions of engineering interest were obtained from one-dimensional steady compressible gas dynamic equations. The effects of com- pressibility, cross-sectional area ratio, and inlet Mach number on the air flows were discussed with regards to the total pressure loss and flow choking. The present results provide available information necessary to design the compressible pipe flow systems.

  • PDF

Evaluation of the Effect of Annular-to-Intermittent Plow Transition Model on the Dryout Model (환상류-간헐류 천이 모텔이 드라이아웃 모델에 미치는 영향 평가)

  • WU S.I.;Im In Cheol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.220-223
    • /
    • 2004
  • The initial conditions such as the film thickness and the void fraction at the onset of annular flow are required for the analytical dryout model. The Disturbance Wave Instability model(DWI model) is one of the model describing the Annular-to-Intermittent Flow regime Transition(AIFT). The experimental CHF conditions for the uniformly heated tube were compared with the predictions by the modified Levy model, for which the initial conditions at AIFT were estimated by the DWI model. For the flow through long tubes with small inlet subcooling, the effect of AIFT model on the dryout prediction was little. However, the use of DWI model gave better prediction of CHF in a short tube.

  • PDF

A New and High-Efficient Energy-Recovery Circuit for Plasma Display Pa]net (새로운 에너지 회수 방식을 채용한 고효율 PDP구동회로)

  • Han Sang-Kyoo;Lee Jun-Young;Park Jung-Phil;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.159-163
    • /
    • 2001
  • A new and high-efficient energy-recovery circuit is proposed to drive a Plasma display panel (PDP) and compared with the conventional circuit. The Proposed circuit uses only two inductors and no auxiliary circuit to recover the energy stored in the equivalent intrinsic capacitance of Plow DP so that it feartures a very simple structure, small volume, fewer power devices. production cost and high efficiency. Besides, the light emitted from PDP is very stable and uniform. It is suitable for wall-hanging color TVs. The proposed circuit, operating at 200kHz, is verified to be applicable on a 42-inch PDP by an experiment.

  • PDF

A Transient Performance Simulation of a Smart UAV Turbojet Engine (스마트 무인기용 터보제트 엔진의 천이성능 모사)

  • 공창덕;강명철;기자영;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.257-260
    • /
    • 2003
  • Dynamic simulation program for a smart UAV turbojet engine was developed. The transient simulation program utilized the CMP(Constant Mass flow) method and Euler integration method for integration of excess torque. The transient performance analysis was carried out by increasing from the idle to the maximum rotational speed of the gas generator. To observe engine dynamic behavior, fuel flow was monitored through a step and a ramp increase. When the fuel was increased as a step function the overshoot of the turbine inlet temperature exceeded the limit temperature.

  • PDF