• Title/Summary/Keyword: Ploidy

Search Result 139, Processing Time 0.029 seconds

AFLP analysis to assess genomic stability in Solanum regenerants derived from wild and cultivated species

  • Aversano, Riccardo;Di Dato, Francesco;Di Matteo, Antonio;Frusciante, Luigi;Carputo, Domenico
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.265-271
    • /
    • 2011
  • The cultivated potato as well as its tuber-bearing relatives are considered model plants for cell and tissue culture, and therefore for exploiting the genetic variation induced by in vitro culture. The association between molecular stability and tissue culture in different genetic backgrounds and ploidy levels has already been explored. However, it still remains to be ascertained whether somaclonal variation differs between callus-derived chromosome-doubled and undoubled regenerants. Our research aimed at investigating, through amplified fragment length polymorphism (AFLP) markers, the genetic changes in marker-banding patterns of diploid and tetraploid regenerants obtained from one clone each of Solanum bulbocastanum Dunal and S. cardiophyllum Lindl (both 2n = 2x = 24) and tetraploids from cultivated S. tuberosum L. (2n = 4x = 48). Pairwise comparisons between the banding patterns of regenerants and parents allowed detecting considerable changes associated to in vitro culture both at diploid and tetraploid level. The percentages of polymorphic bands between diploid and tetraploid regenerants were, respectively, 57 and 69% in S. bulbocastanum and 58 and 63% in S. cardiophyllum. On average, the frequencies of lost parental fragments in regenerants were significantly higher than novel bands both in S. bulbocastanum (48 vs. 22%) and S. tuberosum (36 vs. 18%) regenerants. By contrast, in S. cardiophyllum, a similar incidence of the two events was detected (32 vs. 29%). Our results revealed that structural changes after tissue culture process strongly affected the genome of the species studied, but diploid and tetraploids regenerated plants responded equally.

Current status on Miscanthus for biomass (바이오매스로서의 억새에 대한 연구 동향)

  • Seo, Sang-Gyu;Lee, Jeong-Eun;Jeon, Seo-Bum;Lee, Byung-Hyun;Koo, Bon-Cheol;Suh, Sae-Jung;Kim, Sun-Hyung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.320-326
    • /
    • 2009
  • The carbon dioxide concentration of the atmosphere is projected to increase by almost 50% over the first 50 years of this century. The major cause of this increase is continued combustion of fossil fuels. As a result, the significant changes in climate that have already occurred will be amplified, in particular a global temperature increase. Renewable energy production has a central role to play in abating net $CO_2$ emissions to a level that will arrest the development of global warming. Especially, biomass crops are becoming increasingly important as concerns grow about climate change and the need to replace carbon dioxideproducing fossil fuels with carbon-neutral renewable sources of energy. To succeed in this role, biomass crop has to grow rapidly and yield a reliable, regular harvest. A prime candidate is Miscanthus, or Asian elephant grass, a perennial species that produces over 3 metres of bamboo-like stems in a year. Miscanthus species are typically diploid or tetraploid. Hybrids between species with different ploidy levels result in the highly productive triploid hybrids, M. ${\times}$ giganteus. Here we will detail the Miscanthus characteristics desired of a biomass fuel crop.

Significance of Unreduced ( 2n ) Gametes in Plant Breeding (식물육종에 있어서 비환원 ( 2n ) 배우자의 중요성)

  • Rim, Yong-Woo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Unreduced (2n) gametes are meiotic products (pollen or egg) having a sporophytic (somatic) chromosome number, resulting from abnormalities during either microsporogenesis or megasporogenesis. They occur naturally at a low frequency in many plant species. Unreduced (2n) gametes in plants can be identified for four possible ways as follow i) pollen size and/or shape differences between haploid (n) and diploid (2n) pollen, ii) ploidy analysis (chromosome number) of progeny or meiotic analysis (presence of dyads andlor triads at the microspore stage), iii) progeny performance and fertility and iv) dosage of isozyme and DNA markers. Unreduced (2n) gametes can be an effective breeding tool in synthesizing new cultivars, providing a unique method to maximizing heterozygosity, i.e., transferring a large proportion of the non-additive genetic effects (intra- and inter- locus interactions) h m parent to offspring and can also be used to overcome infertility of interploidy crosses. Sexual polyploidization through 2n gametes has been a major route to the formation of naturally occurring polyploids. The three mechanisms of 2n pollen formation in potato have been discovered as follow: i) parallel spindles (ps) or tripolar spindles (ts), ii) premature cytokinesis (pc-I, pc-2) and iii) synaptic mutants (sy-2, sy-3, sy-4). Genetic analysis indicated that the mechanisms of 2n gamete formation were controlled by single recessive gene in potato, alfalfa, red clover, etc., and by two recessive genes in wheat. The use of 2n gametes which can efficiently transfer germplasm fiom wild relatives to cultivated species, especially fiom diploid to tetraploid could make a contribution to the improvement of germplasm base in breeding programs.

  • PDF

Morphological and Cytogenetic Analysis of Colchicine-induced Tetraploids of Fallopia multiflolra Haraldson (Colchicine 처리에 의해 유기된 4배체 하수오의 형태 및 세포유전학적 특성)

  • Kim, Ki Hyun;Youn, Cheol Ku;Kim, In Jae;Lee, Kyung Ja;Kim, Young Ho;Hong, Seong Tack;Woo, Sun Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.362-369
    • /
    • 2018
  • Background: For stable induction of tetraploidy in Fallopia multiflora Haraldson, colchicine was treated to establish the condition of induction and investigated the morphological and cytogenetic traits of the tetraploid plants obtained compared to those of diploid ones. Methods and Results: For the induction of tetraploidy, F. multiflora plants were soaked in aqueous solutions of colchicine at various concentration (0.1, 0.5, and 1.0%). After this, 2% dimethyl sulfoxide (DMSO) was added at room temperature on a shaker set at 150 rpm for periods of 12, 24, and 48 h. The induction rate of tetraploids appeared to be the highest in plants treated with 0.5% colchicine for 24 h. As the colchicine concentration and soaking time increased above these levels, the growing tip of the roots did not develop and they began to rot. When compared to diploid plants, tetraploids differed greatly in various characteristics, including the sizes and shapes of the leaves, fruits, flowers and roots. The induced tetraploid F. multiflora had larger guard cells, and chloroplasts, increased number of chloroplast in the guard cells and decreased stomatal densities. Conclusions: When colchicine induced plants for tetraploid, it can be distinguished from diploids, in various characteristics such as morphological changes as stomatal size, number of chloroplasts per guard cell, number of chromosomes and flow cytometry. Therefore, it proved that these methods are suitable, quick and easy methods for the identification of the ploidy level of F. multiflora.

Interspecific Hybrids from Wild $\times$ Cultivated Triticum Crosses - A Study on the Cytological Behaviour and Molecular Relations -

  • Bhagyalakshmi, Kari;Vinod, Kunnummal Kurungara;Kumar, Mahadevan;Arumugachamy, Samudrakani;Prabhakaran, Amala Joseph;Raveendran, Thondikulam Subramanian
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.257-262
    • /
    • 2008
  • Genetic diversity of cultivated wheat is narrowing down and is increasingly becoming non-complacent in tackling new pathogenic races and adverse environmental situations. Wild relatives of wheat are rich repositories of beneficial genes that are capable of defying adverse situations. However, these wild species are not readily crossable with cultivated ones. The present study attempted to cross three wild wheat species as females with three cultivated species of varying ploidy to understand the intricate behaviour of hybrids in relation to cytology, morphology, and molecular recombination. Post-fertilization barriers caused hybrid recovery in wild species in contrast to cultivated species. Triticum monococcum did not produce hybrids in any of the crosses. Various degrees of chromosome anomalies and hybrid sterility were seen with hybrids of T. timopheevi and T. sphaerococcum. Cytoplasmic factors were suspected to add more to the abnormality. G genome from T. timopheevi could enhance more pairing between Band D of cultivated species. Precocity of certain chromosomes in laggard formation was evident, pointing towards evolutionary self balance of the genomes which prevented homeologous pairing. They are eliminated in hybrids. Molecular diversity clearly corroborated with genetic proximity of the species, which distinguished themselves by maintaining the genome homeology.

  • PDF

Development of Parthenotes Produced by Various Treatments in Bovine

  • Lee, S. L.;J. G. Yoo;Park, G. J.;Lee, H. J.;S. Y. Choe
    • Proceedings of the KSAR Conference
    • /
    • 2001.10a
    • /
    • pp.62-62
    • /
    • 2001
  • Development of effective activation protocols is of great importance for improving the success of cloning and subsequent transgenic. Three methods for oocyte activation, including 5μM ionomycin (5 min) alone, ionomycin+1.9 mM 6-dimetylaminopurine (DMAP, 3 hrs) and ionomycin+10㎍/㎖ cycloheximide(CHX, 3 hrs) were compared for their effects of pronuclei(PN) formation, development, developmental velocity and ploidy of parthenotes to IVF control in bovine. In group of ionomycin+DMAP, the oocytes having more 3 PN were significantly(P〈0.05) higher than in groups of ionomycin alone and of ionomycin+CHX (45.5% vs. 0 and 0%, respectively). Activation with the ionomycin alone, ionomycin+DMAP and ionomycin+CHX resulted in cleavage rates of 30, 85.5 and 57.9%, respectively. The blastocysts rate of parthenotes activated by ionomycin+DMAP treatment was significantly higher (12.3%, P〈0.05) than those of other treated groups. Chromosome analysis shows that ionomycin+DMAP treatment greatly increases the incidence of chromosomal abnormality of the parthenotes. When compared the developmental velocity at 24 hrs after insemination and activation, 27% eggs in IVF control and 55% in DMAP treatment out of total cleaved eggs developed to 2-cell stage, respectively. Developmental velocity of parthenotes activated by ionomycin +DMAP treatment was significantly (P〈0.05) faster than others. From the results, we may conclude that DMAP treatment to the oocytes accelerates developmental velocity resulting in both the higher incidence of chromosome abnormality and of PN formation suggesting that CHX combined with ionomycin is suitable DMAP for the purpose of successful nuclear transplantation.

  • PDF

The parental origin correlates with the karyotype of human embryos developing from tripronuclear zygotes

  • Joergensen, Mette Warming;Labouriau, Rodrigo;Hindkjaer, Johnny;Stougaard, Magnus;Kolevraa, Steen;Bolund, Lars;Agerholm, Inge Errebo;Sunde, Lone
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • Objective: It has previously been suggested that embryos developing from intracytoplasmic sperm-injected (ICSI) zygotes with three pronuclei (3PN) are endowed with a mechanism for self-correction of triploidy to diploidy. 3PN are also observed in zygotes after conventional in vitro fertilization (IVF). The parental origin, however, differs between the two fertilization methods. Whereas the vast majority of 3PN IVF zygotes are of dispermic origin and thus more likely to have two centrioles, the 3PN ICSI zygotes are digynic in origin and therefore, more likely to have one centriole. In the present study, we examine whether the parental origin of 3PN embryos correlates with the karyotype. Methods: The karyotype of each nucleus was estimated using four sequential fluorescence in situ hybridizations-each with two probes-resulting in quantitative information of 8 different chromosomes. The karyotypes were then compared and correlated to the parental origin. Results: 3PN ICSI embryos displayed a significantly larger and more coordinated reduction from the assumed initial 3 sets of chromosomes than 3PN IVF embryos. Conclusion: The differences in the parental origin-and hence the number of centrioles-between the 3PN IVF and the 3PN ICSI zygotes are likely to be the cause of the differences in karyotypes.

Genetic Analysis of Sexual Life Cycle in Heterothallic Saccharomycopsis lipolytica (Heterothallic Saccharomycopsis lipolytica의 유성생활환(有性生活環)의 유전적(遺傳的) 해석(解釋))

  • Cho, Seok-Gum;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.3-9
    • /
    • 1986
  • A yeast strains, CJ 2, CJ 7 and CJ 8, isolated from soil and contaminated choose, mated with authentic strains of Saccharomycopsis lipolytica and were identified as Saccharomycopsis lipolytica with mating A, B and B, respectively. The strain CJ 7 produced large amount of isocitric acid in glucose and n-hexadecane medium as compared with another strains. All strains produced larger amount of citric acid in n-hexadecane medium as compared with glucose medium, and citric acid production of diploids was greater than that of the parental haploid strains. The specific activity of isocitrate lyase in n-hexadecane grown cells was $15{\sim}20$ times greater than that in glucose-grown cells, but the specific activity of citrate synthetase was not so influenced by carbon source. Little correlation between citric acid production and the specific acitivity of these enzymes was noticed irrespective of strains and ploidy.

  • PDF

Preculture Condition for Stable Recovery of Strawberry (Fragaria × ananassa Duch.) Shoot Tips after Cryopreservation Using Droplet Vitrification

  • Lee, Young-Yi;Lee, Sun-Yi;Song, Jae-Young;Yoon, Munsup;Yi, Jung-Yoon;Lee, Jung-Ro;Kim, Haeng-Hoon
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.675-681
    • /
    • 2020
  • This study describes an efficient and stable droplet vitrification following cryopreservation of strawberry shoot tip (Fragaria × ananassa Duch.) accessions 'Massey' and 'MDUS3816'. The shoot tips were precultured in Murashige and Skoog (MS) liquid medium supplemented with sucrose (0.3-0.7M). Precultured explants were osmoprotected with loading solution (LS, C4) containing 17.5% glycerol and 17.5% sucrose for 40 min and exposed to dehydration solution (B1) containing 50% glycerol and 50% sucrose for 40 min at 25oC. Subsequently, the explants were transferred onto droplets containing 2.5 µL PVS3 on sterilized aluminum foils (4 cm× 0.5 cm) prior to direct immersion in liquid nitrogen (LN) for 1 h. The highest regrowth rate (%) in both the cultivars was obtained when the shoot tips were precultured with 0.3M sucrose for 30 h + 0.5M sucrose for 16 h at 25oC. The cryopreserved shoots tips exhibited 57.8 % recovery rate by culturing in NH4NO3-free MS medium supplemented with 3% sucrose, 1.0 g/L casein, 1.0mg/L GA3, and 0.5 mg/L BA for 5 weeks and in MS medium supplemented with 0.5 mg/L GA3 for 8 weeks. Variation was not observed in both of ploidy analysis and morphological investigation on plantlets of two accessions cryopreserved under variable preculture conditions.

Comparison of Morpho-physiological Characteristics in Diploid and Tetraploid Platycodon grandiflorum

  • Kwon, Soo-Jeong;Lee, Hee-Doo;Seo, Dong-Yeon;Moon, Young-Ja;Cho, Gab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee;Kim, Hag-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • The present study was performed to compare the morpho-physiological characteristics of the tetraploid and diploid varieties of Platycodon grandiflorum and to obtain basic data for cultivating a tetraploid variety with high yield and content of functional substances. The plant height of the tetraploid variety (54.0 cm) was slightly higher than that of the diploid variety. The leaf length and width of the tetraploid variety were 10.2 cm and 7.3 cm, respectively. The results obtained from the present study revealed that the form of the leaf changed from lanceolate to ovate, and the chlorophyll content in the tetraploid variety (16.7) was slightly higher than that in the diploid variety. The photosynthetic rate significantly increased (24%) to $13.4{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ in the tetraploid variety from that of the diploid variety. The pollen viability of the tetraploid variety was decreased by approximately 33% with respect to that of the diploid variety, but this did not have a significant adverse effect on seed production. The fresh weight of tetraploid P. grandiflorum was 49.4 g, which was approximately 44% higher than that of the diploid variety.