• Title/Summary/Keyword: Plenum

Search Result 190, Processing Time 0.029 seconds

Measurement and Prediction of Aerodynamic Noise from Sirocco Fans (시로코 홴 성능 및 공력 소음 예측에 관한 연구)

  • Kim, Kyoung-Ho;Park, Kye-Chan;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.57-64
    • /
    • 1999
  • The prediction method of the performance and aerodynamic noise from a sirocco fan was developed and compared with measured data. To predict the performance of the sirocco fan, the well-known slip coefficients and various loss models were tested and applied to forward curved sirocco impellers. Using loss models proposed for both impeller and casing, the predicted performance characteristics were in good agreement with measured ones by an ANSI test plenum. Various scaling models for aerodynamic noise from the sirocco fan were evaluated and tested against measured power levels in terms of flow coefficient. It was shown that the turbulent broadband sound power from the sirocco fan can be modeled successfully by trailing edge noise.

  • PDF

Flow Characteristics in a Clean Room after Divisional Filter Exchange (부분적인 필터교체에 따른 청정실내부의 유동특성)

  • 이재헌;박명식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2110-2121
    • /
    • 1993
  • A numerical investigation has been carried out for the flow characteristics after exchange of some filters from the original layer to the new low pressure loss layer with equal filtering efficiency. The solution domain includes upper plenum, filter layer, clean space, access panels, and lower plenum. The concept of the distributed pressure resistance was applied to describe the momentum loss in filter layer and access panels. The evolution of the flow field is simulated using the low Reynolds number k-.epsilon. over bar turbulent model and SIMPLE algorithm based on the finite volume method. As a result, after the exchange of filter layer the power requirement can be reduced by 8-9 percent. The results also demonstrate that the perpendicularity of the flow near access panels may become worse at new filter layer than origianl filter layer. But the situation can be recovered by adjusting the jopening ratio of access panels.

The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System (청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

An Experimental Study of the Subsonic/Supersonic Steam Ejectors (아음속/초음속 증기 이젝터에 관한 실험적 연구)

  • Kim, Heuy-Dong;Choi, Bo-Gyu;Lee, Jun-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.479-484
    • /
    • 2000
  • For the purpose of a cost effective design of practical subsonic/supersonic ejector systems, an experiment was carried out using a superheated steam as a primary driving flow. The superheated steam jet was produced by several different kinds of subsonic and supersonic nozzles. The secondary flow of atmospheric air inside a plenum chamber was drawn into the primary steam jet. The vacuum performance of the plenum chamber was investigated for a wide range of the ejector operation pressure ratio. The result showed that the static pressure of the mixed flow at the ejector throat is only a function of the ejector operation pressure ratio, regardless of the primary nezzle type employed.

  • PDF

Numerical Simulations of the Supersonic Jet Impingement in a Confined Plenum of Vertical Launching System

  • Lee Kwang-Seop;Lee Jin-Gyu;Hong Seung-Kyu;Ahan Chang-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.301-305
    • /
    • 2006
  • The Vertical Launching System design is especially complicated by complex flow structure in a plenum with the severe thermal state and high pressure load form the hot exhaust plume. The flow structures are numerically simulated by using the commercial code, CFD-FASTRAN with the axi-symmetrical Navier-Stokes equations. Two different cases are considered; that is, the stationary fire and the moving fire.

  • PDF

A Study on Outlet of Draft Pattern for Equal Pressure Method Underfloor Air Distribution System (등압식 바닥 분출공조시스템의 기류 분출 상태에 관한 연구)

  • Choi, Young-Sik;Son, Won-Tug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.2
    • /
    • pp.29-33
    • /
    • 2013
  • This study has been conducted to propose an optimal design guidance of underfloor air distribution system by examining air pattern and proper exhaust status of floor plenum using CFD (Computational Fluid Dynamics). Simulation shows deficient air pattern and exhaust status at BPG (Bypass Grille) of the current design. As a means to find an alternative design, four cases have been developed and tested. Case 1, 2 and 3 show similar results in comparison to the current design. However, case 4 shows improved air pattern and exhaust status at BPG(Bypass Grille), and has been chosen as the optimal alternative.

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (2) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(2))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part II, which consists of a structural interpretation of the internal flow path of the discharge plenum of the valve block. The simple model result reviewed in Part I was incorporated into the valve block model and five different design changes were reviewed as part of the study on the structural improvement of the internal flow path of the valve block.

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (1) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(1))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part I, which consists of a structural analysis of the valve block, identification of the stress distribution and stress raisers, and creation of a Simple Model of the valve block to review the optimal design. Structural analysis was performed by assigning the same conditions as those found in the valve block model, and the design was reviewed by examining three different design improvement plans for the internal flow path of the discharge plenum.