• 제목/요약/키워드: Plaxis

검색결과 81건 처리시간 0.028초

말뚝 강성을 고려한 지반의 지진하중 저감 효과에 관한 해석 연구 (Analysis on the Seismic Load Reduction Effect of a Ground by Considering Pile Strength)

  • 김상연;박종배;박용부;김동수;이세현
    • 토지주택연구
    • /
    • 제3권4호
    • /
    • pp.451-456
    • /
    • 2012
  • 최근에 건설되는 고층 건물들은 지하 3층 이상의 깊은 지하층을 갖는 경우가 일반적이며, 이 경우에 국내 지반의 특성상 기반암 깊이가 얕아 지하층하부가 암반에 장착되거나 지중에 위치하는 경우가 많다. 현행 우리나라 내진설계기준의 지진하중은 자유장인 지표면에서의 응답을 바탕으로 하고 있어 말뚝이 매설된 기초 하부 지반에서의 지진하중과 상이하므로 비교 및 검증이 요구된다. 이를 위하여 본 연구에서는 2차원 동적(2D Dynamic) 수치해석 기법을 이용하여 말뚝기초가 기반암에 근입될 때 말뚝 강성효과에 의한 기초저면에서의 지진하중 감소를 확인하였으며 경제적인 내진설계를 수행할 수 있는 가능성을 확인해 보았다. 현행 내진 설계기준에 따른 자유장 지표면 가속도를 설계 지진 하중산정 과정에서 말뚝 강성을 고려한 지진 하중 저감효과를 평가하기 위해 PLAXIS 2D 프로그램을 사용하여 말뚝 개수 4개, 8개, 12개인 세가지 말뚝 배치 경우에 대하여 지중 및 기초상부의 최대 지진 가속도와 동일 깊이의 자유장 최대 지진 가속도를 수치해석을 통하여 비교한 결과, 지반내 매설된 말뚝 기초에 의해 20~25%가량의 지진하중 저감효과가 있는 것을 확인하였다. 그러나 말뚝의 개수 및 콘크리트 기초의 크기는 지진응답 특성에 큰 영향을 미치지 않는 것으로 평가되었다.

Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method

  • Nawel, Bousbia;Salah, Messast
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.775-791
    • /
    • 2015
  • Due to the extension of communication ways (metro, highways, railways), hence, to improve traffic flow imposes often the difficult crossing that generally drive to the construction of underground works (tunnel, water conveyance tunnel...) plays a major role in the redevelopment of urban areas. This study is focused on the assessment of the interaction response of parallel tunnels, so this study uses the results from the simulation of two tunnels to illustrate a few observations that may aid in practical designs. In this article, simultaneous drilling of highway's twin tunnels is simulated by means of Finite Element Method (FEM) implemented in Plaxis program. So the treated subject appears in a setting of geotechnical where one can be to construct several tunnels sometimes in a ground of weak mechanical characteristics. The objective of this study is to simulate numerically the interaction effects caused by construction of two parallels tunnels. This is an important factor in the study of the total answer of the problem interaction between parallels underground works. The importance of the effects transmitted is function of several parameters as the type of the works, and the mechanical characteristics (tunnel size, depth, and the relative position between two tunnels, lining thickness...). This article describes numerical analyses of two parallels tunnels interaction. This study will be applied to a real case of a section tunnel T4 of the highway East-West (Algeria); the study presented below comprises a series of numerical simulations of two tunnels using the computer program Plaxis which is used in the analyses is based on Finite Element Method.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • 제19권6호
    • /
    • pp.473-484
    • /
    • 2019
  • In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • 제23권5호
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

항타기 전도예방을 위한 임시 철판의 두께에 관한 연구 (Minimum Thickness of Temporary Steel Plate to Prevent Pile Driver Overturning)

  • 방대평;박종일;기정훈
    • 한국지반환경공학회 논문집
    • /
    • 제21권11호
    • /
    • pp.5-10
    • /
    • 2020
  • 건설 현장에서 항타기 전도 사고는 빈도는 낮으나 발생 시 심각한 피해를 야기한다. 항타기 전도 사고의 주원인은 침하에 의한 모멘트 발생임에도 불구하고 KOSHA-C-101-2014, KOSH-A-GUIDE-71-2012, 산업안전보건 기준, NCS 등의 규정에서 철판 사용에 대한 선언적 내용만 있을 뿐 구체적인 요구조건이 명시되어 있지 않다. 이에 항타기 자중, 지반조건에 따라 하부 철판의 제원이 바뀌어야 하지만 현장에서는 임의로 사용되고 있다. 본 연구에서는 수치 해석(Plaxis 2D)을 기반으로 요구되는 최소 철판 두께를 분석 하였다. 토양의 종류(모래, 점토), 하중 분포, 철판 두께(10mm, 20mm, 30mm, 40mm)에 따라 침하 정도와 및 지반 항복 유무를 산출하였으며, 그 결과 모든 조건에서 두께 10mm 철판은 지반 항복을 유발하였다. 두께 20mm부터는 지반 침하로 발생하는 회전각이 허용치인 2° 이내로 분석되었다.

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

연약지반과 풍화토지반에서 경사고임대 지지블록의 수동토압 산정 (Passive Force Acting on the Kicker Block Used to Support a Raker in Soft and Weathered Soil)

  • 김태형;박이근;김태오;진현식
    • 대한토목학회논문집
    • /
    • 제37권5호
    • /
    • pp.801-813
    • /
    • 2017
  • 경사고임대의 지지블록에서 발휘되는 수동토압은 지반종류에 따라 발휘되는 토압이 다르다. 영구구조물인 옹벽 설계에서는 수동토압의 안전율을 고려하도록 하고 있으나, 가시설에 설치되는 경사고임대 지지블록에 작용하는 토압은 실제 발휘되는 수동측토압보다 과하게 산정되어 불안전측의 설계가 되고 있다. 본 연구에서는 3차원 수치해석(PLAXIS)을 이용 토사지반에서 경사고임대 지지블록에 발생되는 수동측토압을 산정하였다. 토사지반으로 연약지반과 풍화토지반이 선택되었다. 수치해석결과 각 지반에서 지지블록의 수평변위와 수동측토압 관계 곡선이 산정되었으며 이 곡선상의 항복점이 설계에 적용할 경사고임대 지지체에서의 저항력으로 연약지반에서는 Rankine 수동토압의 약 55.5%, 풍화토지반에서는 약 66%를 보는 것이 안정성 측면에서 바람직한 것으로 나타났다.