• Title/Summary/Keyword: Platinum catalyst

Search Result 242, Processing Time 0.027 seconds

Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 시멘테이션에 의한 백금족(白金族) 금속(金屬)의 회수(回收))

  • Kim, Min-Seuk;Kim, Byung-Su;Kim, Eun-Young;Kim, Soo-Kyung;Ryu, Jae-Wook;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.36-45
    • /
    • 2011
  • The recovery of platinum group metals (PGMs) from the leach solution of spent auto-catalyst and the wash solution of the leach residue was investigated in the laboratory scale experiments by the cementation process using metal powders as the reductant. In this study, the effect of Al, Mg and Zn powders on the cementation process was particularly examined. Aluminum powder was selected as the most suitable reductant for the cementation of PGMs. At the cementation time of 10 minute under the aluminium stoichimetric amount of 19.3 and the reaction temperature of $50{\sim}60^{\circ}C$, the recovery of platinum group metals from the leach solution of the spent auto-catalyst was found to be 99.3%, 99.4%, 90.2% for Pt, Pd and Rh, respectively. Under the same conditions with the aluminium stoichimetric amount of 45, the recovery of platinum group metals from the wash solution of the leach residue of spent catalyst was observed to be 97%, 97% and 90% for Pt, Pd and Rh, respectively. In addition, it was possible to upgrade the platinum group metals in the precipitates obtained from the cementation process by about 10% through the removal of metal impurities by the nitric acid leaching at ambient temperature.

The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere (공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성)

  • Park, Eun Jung;Ko, Yun Ki;Park, Chu Sik;Kim, Chang Hee;Kang, Kyoung Soo;Cho, Won Chul;Jeong, Seong Uk;Bae, Ki Kwang;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.

Solvent Extraction of Platinum Group Metals from the leach Liquor of Spent Automotive Catalyst (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 백금족(白金族) 금속(金屬)의 용매추출(溶媒抽出))

  • Kim, Mi-Ae;Lee, Jae-Chun;Kim, Chi-Kwon;Kim, Min-Seuk;Kim, Byung-Su;Yoo, Kyoung-Keun
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.3-10
    • /
    • 2006
  • The solvent extraction for the separation of platinum group metals from the leach liquor of spent automotive catalysts has been studied. Tri-n-butyl phosphate (TBP), tri-n-octylamine (TOA) and di-n-hexyl sulfide (DHS) were used as extractants and kerosene as a diluent. The extraction behavior of platinum, palladium and rhodium has been investigated as functions of different kinds of extractants and their concentrations. In addition, the extraction behavior of the major metal impurities such as cerium, lead, iron, magnesium and aluminum has been investigated. Platinum and palladium were extracted with TBP. And platinum, palladium and rhodium were extracted with TOA. Platinum was co-extracted with palladium into the organic phase by solvent extraction using SFI-6 of DHS extractant, but only palladium was selectively extracted with SFI-6R. The selective extraction of palladium with SFI-6R was found better than that with SFI-6, but the kinetics of extraction with SFI-6R was found poor in comparison to SFI-6. The metal impurities extracted simultaneously during the extraction of platinum group metals should be removed in scrubbing and stripping processes. A suitable process has been proposed for the separation of platinum group metals from the leach liquor of spent automotive catalysts. Initially palladium was extracted with SFI-6R, followed by the separation of platinum with TBP or TOA leaving rhodium in the raffinate.

Characterization of Enhanced CO Oxidation Activity by Alumina Supported Platinum Catalyst

  • Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1071-1077
    • /
    • 2009
  • A novel pretreatment technique was applied to the conventional Pt/alumina catalyst to prepare for the highly efficient catalyst for the preferential oxidation of carbon monoxide in hydrogen-rich condition. Their performance was investigated by selective CO oxidation reaction. CO conversion with the oxygen-treated Pt/Alumina catalyst increased remarkably especially at the low temperature below $100^{\circ}C$. This result is promising for the normal operation of the proton exchange membrane fuel cell (PEMFC) without CO poisoning of the anode catalyst. XRD analysis results showed that metallic Pt peaks were not observed for the oxygen-treated catalyst. This implies that well dispersed small Pt particles exist on the catalyst. This result was continued by high resolution transmission electron microscopy (HRTEM) analysis. Consequently, it can be concluded that highly dispersed Pt nanoparticles could be prepared by the novel pretreatment technique and thus, CO conversion could be increased considerably especially at the low temperatures below $100^{\circ}C$.

Smelting of Platinum Group Metals and Recycling of Spent Catalyst (백금족 금속의 제련과 폐촉매의 리사이클링)

  • Son, Injoon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.18-29
    • /
    • 2021
  • Platinum group metals (PGMs) are used in a wide range of application fields such as catalysts, electronic devices, electrodes, electrical devices, fuel cells and high temperature materials due to their excellent electrical and thermal conductivity as well as chemical resistivity. Platinum group elements are generally associated with nickel-copper sulfides in magmatic rocks. Depending on the relative concentrations of the PGMs, they are produced either as the primary products or as by-products of the nickel and copper. However, PGMs natural resource deposits are strictly limited in countries such as South Africa and Russia. The annual supply of PGMs is only under 500 t. Considering the limited supply of PGMs, there will be a noticeable increase in the supply risk associated with PGMs in the near future. Therefore, it is extremely important to recover PGMs from secondary resources such as spent catalysts. This paper reviews on overview of PGMs extraction and recycling processes.

Effect of Pt Particle Size on the Durability of PEMFC (연료전지 촉매의 입자크기가 내구성에 미치는 영향)

  • Min, Kyoung-Won;Kim, Hyun-Jong;Han, M.K.;U, Yu-Tae;Kim, Mok-Soon;Chu, Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2008
  • The influence of the particle size of platinum(Pt) on the stability and activity was studied. The particle size of platinum was controlled in the range of $3.5{\sim}9\;nm$ by heat treatment of commercial Pt/C and confirmed by XRD and TEM. An accelerated degradation test was performed to evaluate the stability of platinum catalysts. Oxygen reduction reaction was monitored for the measurement of activity. As increasing the Pt particle size, the stability of Pt/C electrode was enhanced and the activity was reduced. It was confirmed that the stability of Pt/C electrode was in inverse proportion to the activity. PtCo/C alloy catalyst was used to improve the activity and stability of large-sized platinum particle. The maximum power density of commercial Pt/C was $507.6\;mV/cm^2$ and PtCo/C alloy catalyst was $585.8\;mV/cm^2$. The decrement of electrochemical surface area showed Pt/C(60%) and PtCo/C alloy catalyst(24%). It was possible to enhance both of stability and activity of catalyst by the combination of particle size control and alloying.

Synthesis of Electrode Catalyst for Polymer Electrolyte Membrane Fuel Cells Using Colloidal Method (콜로이드법을 이용한 고분자전해질 연료전지용 백금전극 촉매의 제조)

  • Park, Jin-Nam
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Pt/carbon Electrode catalysts for PEMFC were synthesized using colloidal method. PSA (platinum sulfite acid) was used as a Pt precursor and CPA (chloroplatinic acid) was also used to replace relatively expensive PSA. Electrode catalysts prepared using PSA showed Pt particle size less than 3.5 nm and Pt yield higher than 90% in 10~40 wt% Pt loading. Electrode catalysts prepared using CPA also showed Pt particle size less than 4.4 nm and Pt yield higher than 80% in 10~40 wt% Pt loading. The MEA (membrane electrode assembly) using 20 wt% Pt/VXC72 showed equivalent I-V curve comparing with commercial electrode catalyst in single cell test.

Preparation of $Pt/TiO_2/Nafion$ Electrolyte Membrane for Self-humidifying membrane of PEMFC (연료전지의 자가 가습 $Pt/TiO_2/Nafion$ 전해질막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Ju, Min-Cheol;Kim, Hwang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The $Pt/TiO_2 catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$ The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. $TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then $Pt/TiO_2/Nafion$composite membrane was prepared using solution-cast method. The size, dispersion and content of the platinum had been characterized with Transmission Electron Micrograph (TEM), X-ray diffract ion (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The cell performance with the self-humidifying composite membrane was compared with a recast Nafion membrane under both humidified and dry conditions at 65 $^{\circ}C$.

  • PDF

Synthesis and Oxygen Reduction Reaction Evaluation of 20% Pt/C for Polymer Electrolyte Fuel Cell (고분자전해질 연료전지용 20% Pt/C 캐소드 촉매 제조 및 산소환원반응 평가)

  • Kim, Jinhwan;Kang, Suk-Min;Thube, Dilip. R.;Ryu, Hojin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.454-459
    • /
    • 2009
  • In order to commercialize Polymer Electrolyte Fuel Cell (PEFC), the cathode catalyst such as Platinum supported Carbon (Pt/C) need to have a high activity of Oxygen Reduction Reaction (ORR). In this study, the 20% Pt/C was synthesized using the chemical reduction method while the crystallinity of Platinum (Pt) particles were controlled under heat treatment conditions. The activity of synthesized Pt catalysts was evaluated using electrochemical measurement. Compared with the $i_{ORR}$ at 0.8 V of 20% Pt/C heat-treated at $500^{\circ}C$ and the 20% Pt/C that were not heated and commercial 20% Pt/C, the $i_{ORR}$ at 0.8 V of 20% Pt/C heattreated at $500^{\circ}C$ was 9.5 and 1.7 times higher than those of the 20% Pt/C and commercial 20% Pt/C that were not heated. It was considered that the crystallinity and particle size affect the ORR activity of the Pt/C catalysts.