• Title/Summary/Keyword: Platform Loading

Search Result 137, Processing Time 0.026 seconds

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.

Chaos analysis for the periodic nonlinear system using harmonic balance method (조화함수법을 이용한 주기 비선형 시스템의 Chaos 해석)

  • Kim, Y.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.75-85
    • /
    • 1994
  • 주기함수의 외력을 갖는 버선형 시스템의 다양한 응답 특성을 구하기 위해 새로운 조화함수법(HBM)을 적용하였다. 새로운 조화함수법의 해는 비선형항을 선형항으로부터 따로 분리시킨 다음 같은 주파수 성분을 갖는 비선형 방정식들을 Newton-Raphosn법으로 풀어서 구하였다. 다양한 천이(Bifurcation) 특성을 해석적으로 판별하기 위하여 HBM의 해를 이용하여 구한 섭동 방정식의 Floquet 지수의 고유해를 사용하였다. 새로이 개발한 HBM과 천이 판별법을 1차원 비선형항을 갖는 구조물인 ALP(Articulated Loading Platform) 모델과 다차원인 비선 형 회전체 모델에 적용시켜 HBM의 해의 정확성과 이들 시스템의 천이 특성의 하나인 Chaos 존재를 확인 하였다.

  • PDF

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.

Wind spectral characteristics on strength design of floating offshore wind turbines

  • Udoh, Ikpoto E.;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.281-312
    • /
    • 2018
  • Characteristics of a turbulence wind model control the magnitude and frequency distribution of wind loading on floating offshore wind turbines (FOWTs), and an in-depth understanding of how wind spectral characteristics affect the responses, and ultimately the design cost of system components, is in shortage in the offshore wind industry. Wind spectrum models as well as turbulence intensity curves recommended by the International Electrotechnical Commission (IEC) have characteristics derived from land-based sites, and have been widely adopted in offshore wind projects (in the absence of site-specific offshore data) without sufficient assessment of design implications. In this paper, effects of wind spectra and turbulence intensities on the strength or extreme responses of a 5 MW floating offshore wind turbine are investigated. The impact of different wind spectral parameters on the extreme blade loads, nacelle accelerations, towertop motions, towerbase loads, platform motions and accelerations, and mooring line tensions are presented and discussed. Results highlight the need to consider the appropriateness of a wind spectral model implemented in the strength design of FOWT structures.

A Computational Platform for Nonlinear Analysis of Prestressed Concrete Shell Structures

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.593-606
    • /
    • 2010
  • This paper presents a formulation to include the prestressing effects in available numerical models for the nonlinear material, instantaneous and long-term analysis of prestressed concrete shell structures, based on the displacement formulation of the finite element method. A four-node flat shell element is adopted for nonlinear analysis of prestressed concrete shells. This element was incorporated into an existing general-purpose finite element analysis program. A distinctive characteristic of the element is its capability to simulate the behavior of shells subjected to a variety of types of loading and drilling rotational stiffness. Consequently, the response of prestressed concrete shell structures can be predicted accurately using the proposed nonlinear finite element procedure.

On the structural behavior of ship's shell structures due to impact loading

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 2018
  • When collision accident between ships or between ship and offshore platform occurs, a common phenomenon that occurs in structures is the plastic deformation accompanied by a large strain such as fracture. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is heated by line heating and steel plate formed by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model and the assumption that strain rate can be neglected when strain rate is less than the intermediate speed are verified through free drop test as well as comparing with numerical results in several references. This paper ends with describing the future study.

Experimental Study on the Shock Response of a Cylindrical Structure with the Bolted Joint (조인트를 가진 원통형 구조물의 충격 응답에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.581-589
    • /
    • 2019
  • Guided missiles assembled with the bolted joint are subjected to various shock loading conditions while flying in the air and operating on the ground or platform. Especially, It is important to analyze the effect of the shock load on the structure because it affects the structure for a short duration time while its acceleration magnitude is quite large. In this study, mechanical shock tests on the structure with the bolted joint have been carried out to measure the acceleration changes of the structure against external shock loads by electrical exciter. Variation of dynamic characteristics of a structure with fastening methods and fastening forces has been investigated through Shock Response Spectrum analysis.

Design and Implementation of Low-Cost Articulate Manipulator for Academic Applications

  • Muhammad Asim Ali;Farhan Ali Shah
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • The objective of this work is to design a low cost yet fully functional 4-DOF articulate manipulator for educational applications. The design is based on general purpose, programmable smart servo motors namely the Dynamixel Ax-12. The mechanism for motion was developed by formulating the equations of kinematics and subsequent solutions for joint space variables. The trajectory of end-effector in joint variable space was determined by interpolation of a 3rd order polynomial. The solutions were verified through computer simulations and ultimately implemented on the hardware. Owing to the feedback from the built-in sensors, it is possible to correct the positioning error due to loading effects. The proposed solution offers an efficient and cost-effective platform to study the trajectory planning as well as dynamics of the manipulator.

An Effective Employment and Execution Performance Improvement Method of Mobile Web Widget Resources Based on the OMTP BONDI (OMTP BONDI 기반 모바일 웹 위젯 리소스의 효율적 운용 및 구동 성능 개선 기법 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.153-170
    • /
    • 2011
  • OMTP (Open Mobile Terminal Platform) is a global forum made by telecommunications providers to promote user-oriented mobile services and data business. Devised by OMTP, BONDI is a browser-based application or a mobile web run-time platform to help widgets make good use of functions of mobile devices in a secure way. BONDI enables applications programmed with web standard technologies such as HTML, JavaScript, CSS, and AJAX to reach the internal functions of mobile devices. Since BONDI, which is not just a simple network application, can reach the internal resources of devices in standard ways, it enables the application and widgets to be developed regardless of tile OS or platform. Web browser-based widgets are vulnerable to the network environment, and their exeeution speed can be slowed as the operations of the widgets or applications become heavy. However, those web widgets will be continuously used thanks to the user-friendly simple interface and the faster speed in using web resources more than the native widgets inside the device. This study suggested a method to effectively operate and manage the resource of OMTP BONDI web widget and then provided an improved result based on a running performance evaluation experiment. The experiment was carried to improve the entire operating time by enhancing the module-loading speed. In this regard, only indispensable modules were allowed to be loaded while the BONDI widget was underway. For the purpose, the widget resource list, able to make the operating speed of the BONDI widget faster, was redefined while a widget cache was employed. In addition, the widget box, a management tool for removed widgets, was devised to store temporarily idle widgets.