• Title/Summary/Keyword: Platform

Search Result 11,823, Processing Time 0.041 seconds

Computer Vision Platform Design with MEAN Stack Basis (MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yun, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

Nonlinear analysis of a riverine platform under earthquake and environmental loads

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.343-354
    • /
    • 2018
  • A realistic FEM structural model is developed to predict the behavior, load transfer, force distribution and performance of a riverine platform under earthquake and environmental loads. The interaction between the transfer plate and the piles supporting the platform is investigated. Transfer plate structures have the ability to redistribute the loads from the superstructure above to piles group below, to provide safe transits of loads to piles group and thus to the soil, without failure of soil or structural elements. The distribution of piles affects the distribution of stress on both soil and platform. A materially nonlinear earthquake response spectrum analysis was performed on this riverine platform subjected to earthquake and environmental loads. A fixed connection between the piles and the platform is better in the design of the piles and the prospect of piles collapse is low while a hinged connection makes the prospect of damage high because of the larger displacements. A fixed connection between the piles and the platform is the most demanding case in the design of the platform slab (transfer plate) because of the high stress values developed.

Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가)

  • Kwon, Suk-Bong;Yun, Sung-Rack;Jang, Gyu-Cheol;Kim, Yong-Rae;Kim, Bong-Wan;Kim, Hoi-Rin;Yoo, Chang-Dong;Lee, Yong-Ju;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.59
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

Intermediate Language Translator for Execution of Java Programs in .NET Platform

  • Lee, Yang-Sun;Na, Seung-Won;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.824-831
    • /
    • 2004
  • This paper presents the java bytecode-to-.NET MSIL intermediate language translator which enables the execution of the java program in .NET environments without JVM(java Virtual Machine), translating bytecodes produced by compiling java programs into MSIL codes. Java, one of the most widely used programming languages recently, is the language invented by James Gosling at Sun Microsystems, which is the next generation language independent of operating systems and hardware platforms. Java source code is compiled into bytecode as intermediate code independent of each platform by compiler, and also executed by JVM. .NET language such as C# and .NET platform in Microsoft Corp. has been developed to meet the needs of programmers, and cope with Java and JVM platform of Sun Microsystems. After compiling, a program written in .NET language is converted to MSIL code, and also executed by .NET platform but not in JVM platform. For this reason, we designed and implemented the java bytecode-to-.NET MSIL translator system for programs written in java language to be executed in the. NET platform without JVM. This work improves the execution speed of programs, enhances the productivity, and provides a environment for programmers to develop application programs without limitations of programming languages.

  • PDF

Developing a Sustainable IoT Platform (지속 가능한 IoT 플랫폼 개발)

  • Choi, Hyo Hyun;Lee, Gyeong young;Yun, Sang un
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.243-244
    • /
    • 2019
  • 본 논문에서는지속 가능한 IoT Platform을 개발 하였다. 개발된 IoT(Internet of Things) Platform은 센서를 제어하는 특정 시스템과의 통신을 통한 제어 및 데이터 전달에 용이하고, 제한된 통신 환경 및 낮은 전력에서도 지속적인 작동이 가능하여 가용성(Availability)과 확장성(Extensibility)이 뛰어나다. 본 논문에서는 지속 가능한 IoT Platform의 테스트를 위해 클라우드 컴퓨팅 플랫폼인 AWS EC2(Amazon Elastic Compute Cloud, EC2)에 구축하였으며, DataBase 서버로는 오픈 소스 관계형 데이터베이스 관리 시스템인 MariaDB를 선정하였으며, 센서를 제어하는 특정 시스템인 스마트 미러 시스템(Smart Mirror System)과 미세먼지 제어 시스템(Air Quality Control System)에 기존의 Google IoT Platform에서 사용되는 MQTT Protocol(Message Queuing Telemetry Transport Protocol)와 지속 가능한 IoT Platform를 위해 개발된 TCP/IP Protocol를 사용하여 비교했다. 개발된 IoT Platform은 UTM(Unmanned Aircraft System Traffic Management)으로 확장할 계획이다.

  • PDF

CityDataHub-based Smart-Platform Design for Dissemination of Smart City Data Hub (스마트시티 데이터허브 보급을 위한 시티데이터허브 기반 스마트 플랫폼 설계)

  • Lee, Geum Bi;Kim, Ki Su;Kang, Seung Hag
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.101-121
    • /
    • 2022
  • Purpose This study aims to introduce a Smart-Platform for solving numerous problems in urban cities and improving citizens' convenience. This Smart-Platform is achieved by studying the City Data Hub technology to build and spread a Smart City Data Hub . Design/methodology/approach In this study, we analyzed the functions in detail and interlocking flows specific to the published City Data Hub module and designed a Smart-Platform with additional UI-based functions to improve users' convenience based on our previous experience. Findings The City Data Hub will provide a modular data hub platform functionality for application by different stakeholders. However, further research on detailed functionality and experience in interworking legacy systems will be required to apply the platform realistically. Therefore, we judged that this Smart-Platform, which supplements the City Data Hub with additional functions, would be useful for utilizing the City Data Hub in the future. Through the demonstration of the platform designed, it is also necessary to explore the direction of continuous development for the future.

CDOWatcher: Systematic, Data-driven Platform for Early Detection of Contagious Diseases Outbreaks

  • Albarrak, Abdullah M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.77-86
    • /
    • 2022
  • The destructive impact of contagious diseases outbreaks on all life facets necessitates developing effective solutions to control these diseases outbreaks. This research proposes an end-to-end, data-driven platform which consists of multiple modules that are working in harmony to achieve a concrete goal: early detection of contagious diseases outbreaks (i.e., epidemic diseases detection). Achieving that goal enables decision makers and people in power to act promptly, resulting in robust prevention management of contagious diseases. It must be clear that the goal of this proposed platform is not to predict or forecast the spread of contagious diseases, rather, its goal is to promptly detect contagious diseases outbreaks as they happen. The front end of the proposed platform is a web-based dashboard that visualizes diseases outbreaks in real-time on a real map. These outbreaks are detected via another component of the platform which utilizes data mining techniques and algorithms on gathered datasets. Those gathered datasets are managed by yet another component. Specifically, a mobile application will be the main source of data to the platform. Being a vital component of the platform, the datasets are managed by a DBMS that is specifically tailored for this platform. Preliminary results are presented to showcase the performance of a prototype of the proposed platform.

Edge Computing-Based Medical Information Platform for Automatic Authentication Using Patient Situations

  • Gyu-Sung Ham;Mingoo Kang;Suck-Tae Joung;Su-Chong Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1049-1065
    • /
    • 2023
  • Recently, with the development of IoT, AI, and mobile terminals, medical information platforms are expanding. The medical information platform can determine a patient's emergency situation, and medical staff can easily access patient information through a mobile terminal. However, in the existing platform, emergency situation decision is delayed, and faster and stronger authentication is required in emergency situations. Therefore, we propose an edge computing-based medical information platform for automatic authentication using patient situations. We design an edge computing-based medical information platform architecture capable of rapid transmission of biometric data of IoT and quick emergency situation decision, and implement the platform data flow in emergency situations. Relying on this platform, we propose the automatic authentication using patient situations. The automatic authentication protects patient information through patient-centered authentication by using the patient's situation as an authentication factor, and enables quick authentication by automatically proceeding with mobile terminal authentication after user authentication in emergencies without user intervention. We compared the proposed platform with existing platforms to show that it can make quick and stable emergency decisions. In addition, comparing the automatic authentication with existing authentication showed that it is fast and protects medical information centered on patient situations in emergency situations.

Development of supporting platform for the fine flow characteristics of reactor core

  • Hao Qian;Guangliang Chen;Lei Li;Lixuan Zhang;Xinli Yin;Hanqi Zhang;Shaomin Su
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1687-1697
    • /
    • 2024
  • This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.

Establishment and service of user analysis environment related to computational science and engineering simulation platform

  • Kwon, Yejin;Jeon, Inho;On, Noori;Seo, Jerry H.;Lee, Jongsuk R.
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.123-132
    • /
    • 2020
  • The EDucation-research Integration through Simulation On the Net (EDISON) platform, which is a web-based platform that provides computational science and engineering simulation execution environments, can offer various analysis environments to students, general users, as well as computational science and engineering researchers. To expand the user base of the simulation environment services, the EDISON platform holds a challenge every year and attempts to increase the competitiveness and excellence of the platform by analyzing the user requirements of the various simulation environment offered. The challenge platform system in the field of computational science and engineering is provided to users in relation to the simulation service used in the existing EDISON platform. Previously, EDISON challenge servicesoperated independently from simulation services, and hence, services such as end-user review and intermediate simulation results could not be linked. To meet these user requirements, the currently in-service challenge platform for computational science and engineering is linked to the existing computational science and engineering service. In addition, it was possible to increase the efficiency of service resources by providing limited services through various analyses of all users participating in the challenge. In this study, by analyzing the simulation and usage environments of users, we provide an improved challenge platform; we also analyze ways to improve the simulation execution environment.