JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004(pp. 824-831)

Intermediate Language Translator for Execution of
Java Programs in .NET Platform

YangSun Lee*, SeungWon Na”, DaeHoon Hwang*ﬂ

ABSTRACT

This paper presents the java bytecode-to- NET MSIL intermediate language translator which enables
the execution of the java program in .NET environments without JVM(Java Virtual Machine), translating
bytecodes produced by compiling java programs into MSIL codes. Java, one of the most widely used
programming languages recently, is the language invented by James Gosling at Sun Microsystems, which
is the next generation language independent of operating systems and hardware platforms. Java source
code is compiled into bytecode as intermediate code independent of each platform by compiler, and also
executed by JVM. .NET language such as C# and .NET platform in Microsoft Corp. has been developed
to meet the needs of programmers, and cope with Java and JVM platform of Sun Microsystems. After
compiling, a program written in .NET language is converted to MSIL code, and also executed by .NET
platform but not in JVM platform. For this reason, we designed and implemented the java bytecode-
to-.NET MSIL translator system for programs written in java language to be executed in the NET
platform without JVM. This work improves the execution speed of programs, enhances the productivity,
and provides a environment for programmers to develop application programs without limitations of

programming languages.

Keywords: Bytecode, MSIL, Intermediate Language, Translator, JVM, .NET Platform

1. INTRODUCTION

Java, one of the most widely used programming
languages recently, is the language invented by
James Gosling at Sun Microsystems, which is the
next generation language independent of operating
systems and hardware platforms. Java is a lan-
guage that generates execution files through com-

piling. The generated files are in the bytecode form,

¥ Corresponding Author: YangSun Lee, Address:

(136-704) 16-1 Jungneung-Dong Sungbuk-Ku Seoul,

Korea, TEL : +82-2-940-7292, FAX :+82-2-919-0345,

E-mail : yslee@skuniv.ac.kr

Receipt date : March 23, 2004, Approval date : May 28, 2004
' Dept. of Computer Engineering, Seokyeong Univ., Korea.
" Platform R&D Center, SK Telecom CO., LTD, Korea.

(E-mail : nasw@dgu.ac.kr)

College of Software, Kyungwon Univ., Korea.

(E-mail : hwangdh@kyungwon.ac.kr)

% This work was supported by grant No.(R01-2002-

000-00041-0) from the Basic Research Program of the

Korea Science & Engineering Foundation.

it

which is interpreted and executed by JVM(Java
Virtual Machine), the Java interpreter. Therefore,
Java programming language is both complier and
interpreter language, but more universal than
normal compilers and runs faster and more ef-
ficiently than usual interpreters[2,5,3].

On the other, C# language provided by Microsoft
NET platform is offered as a platform-inde-
pendent language like Java of Sun Microsystems,
the development of components by C# is becoming
widespread. C# is a language based on the char-
acteristics of high coding convenience and easy
maintenance of Microsoft Visual Basic and flexi-
bility and intensity of C++ which enables much
faster and easier development of COM++ and web
services[1,3,4,14].

On the other hand, one of studies about a
translator is about an intermediate language trans-
lator[19-22] that generates a native code of the

intermediate Language Translator for Execution of Java Programs in .NET Platform 825

target machine from bytecode for improving an
execution speed of java applications. It, however,
can not be used in other computer environments
because of being dependent on a target machine.

Microsoft has developed the JLCA translator{23]
which converts a java program into a C# program
in a source language level. With the iNET trans-
lator[24] the Halcyon Soft generates java source
program from NET MSIL code, an intermediate
code of NET programming languages. The Re-
motesoft, on the contrary, has developed the Java.
NET translator[25] which translates a java source
program into a .NET MSIL code.

It can't guarantee the security of source pro—
grams that a source program is translated into an
intermediate code like JCLA or Java.NET. It also
takes more time, and is hard to have good per-
formance and is difficult to overcome the semantic
gap, bacause translating an intermediate code into
a source program such as INET should have
several translation steps.

On this environment of NET platform, we can
create any code that, once converted to MSIL, can
generate an execution file optimized for the target
platform regardless of the language used. There-
fore, by converting the java bytecode to .NET
MSIL, we can run the java programs on the
Windows NET platform even without JVM.

In summary, this paper presents a method to
translate java bytecode to NET MSIL code using
a mapping table and the macro translation method,
to construct a platform independent information
system. Indeed, we designed and implemented a
translator using this method, and translate a java
bytecode program to MSIL code to run it on the
NET platform without JVM.

2. BYTECODE AND MSIL CODE

2.1 Bytecode

Bytecode can be considered as a machine lan-
guage for JVM(Java Virtual Machine). It is

acquired in the stream format for each method
within a class when JVM loads a class file. At this
time, the stream is in the binary stream format of
a 8-bit byte. Furthermore, a bytecode basically has
a stack-oriented structure, originally intended for
being used through an interpreter. In other words,
it is either interpreted by JVM, or compiled when
the class is loaded[2,5,8,15,16].

JVM(Java Virtual Machine) saves and executes
the source code by java programming language
using class file format. Since the class file is in
binary format, it is very difficult to analyze and
modify. On the other hand, Oolong code, another
type of java intermediate language, is much easier
to read and write compared to class file format.
Oolong code is based on Jasmin language of John
Meyer, and designed to work in the level of
bytecodel5,131.

Fig. 1 schematically shows the process of ex-
traction of Oolong code from class file. In order to
obtain an assembly format file as an input for the
translator from the class file acquired by java
compiler, javac, we used the Oolong decompiler,
Gnoloo. Gnoloo carries out the function to extract
only the source code-related contents from the
various data in the class file.

B Joan Assernbly Foyra Extraction

Fig. 1. Oolong Code Extracting Process

2.2 MSIL Code

MSIL(MicroSoft Intermediate Language) is an
intermediate language of NET language such as
C#, comprising a set of stack-based instructions
designed to be easily generated from source codes

826 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

through a compiler or other tools. The instructions
are classified into arithmetic/logical operations,
flow control, DMA, exception handling, and meth-
od calling. In addition, the virtual method calling,
field access, array access, object allocation and
initialization, which affect the programming struc-
ture, are also types of instructions directly sup-
ported by MSIL. The MSIL instruction set search-
es data types in stacks, and is directly interpreted.

Furthermore, MSIL is independent of hardware
and platform, and was originally designed for JIT.
Unlike Java, it was designed to be language
independent of the first and targeted at generic
programming. Consequently, the language adapts
very well to the change of program functions and
structuresf1,3,6,7,9,11,131.

Fig. 2 illustrates the extraction of an MSIL code
in reverse order to find out the resulting format
of the translator.

Fig. 2. MSIL Extracting Process

3. CODE GENERATION AND CODE
CONVERSION METHODS

3.1 Code Generation Method

In general, there are two methaods for generation
of object codes from an intermediate language:
using code expander or code generator.

The code expander method uses the routine to
convert an intermediate code to the concrete target
machine code. The benefit of this method is that
it can generate a target machine code within a
short time. However, the quality of the generated

code is lower than the code generator method
{3,7,17,181.

The code generator method is to generate codes
through pattern matching technique referencing
the code generation rules described in the target
machine code table(MDT: Machine Description
Table). The benefit of using this method is that
we can get high—quality target machine codes. On
the other hand, its disadvantage is that there is a
time delay while generating a target machine code
through pattern matching techniques{3,7,17,18].

In this paper, we used the code generator to
convert codes through a pattern matching tech-
nigue with the intermediate language instruction
code table.

3.2 Code Conversion Method

The code conversion method is to generate codes
by using the routine of converting the intermediate
code to a concrete target machine code. The code
conversion method utilizes the macro conversion.
The macro definition format consists of a macro
name, parameters, and the macro definition part to
be expanded between ‘{’ and ‘).

Table 1. Macro definition format

macro’s name [{ _parameter | parameter { argument })]
{ definition of the macro
call for another macro

The following is an example of macro definition
of an MSIL code for a bytecode instruction.

istore_2 iadd
iconst_2 iadd
{ {
ldc.i4.2 add
} //push 2 onto the] } //add to values,
stack as i4 returning a new value

Intermediate Language Translator for Execution of Java Programs in .NET Platform 827

4. JAVA BYTECODE-TO-.NET MSIL
IL TRANSLATOR

For the translation system from Java bytecode
to .NET MSIL code to construct a platform in-
dependent information system, we designed and
implemented the code translator by using the map-
ping table and the macro conversion method. We
must convert the matching between codes through
the mapping table so that the instruction mapping
part and the function format structure conversion
part, which are the main components of the trans—
lator, would become functionally equivalent to the
relationship between bytecode and MSIL code.
Furthermore, in the actual implementation, we will
refer to the table corresponding to each of the codes

by using the macro conversion method.

4.1 System Configuration

Fig. 3 shows the system configuration of the
translator from Java bytecode, namely Oolong
code, to NET MSIL code. For the process of ex-
tracting the Oolong code from class file, with the
class file as an input, the Qolong disassember,
Gnoloo, was used to output the Oolong code in the
text assembly format. Next, with the code con-
verter, we generated an MSIL code from the Oo-
long code used as the input file. Finally, we created
an *.exe file from the MSIL code through ilasm.exe
provided by the NET platform.

|
i
|

Fig. 3. System Configuration

4.2 Java Bytecode-to- NET MSIL Translator

With the extracted Oolong code as an input to
the translator, we used the instruction mapping
table and the function format structure conversion
table to generate MSIL code, which is the resulting
code of the translator. As shown in Fig. 4, we
obtained an MSIL code from the Oolong code
through the extraction process, and the result is
generated from the two processes of mapping and
conversion.

The development environment for the translator
is divided into the JDK and Oolong part to create
and disassemble the java class file to be input to
the translator, and the NET platform SDK part to

convert the translated MSIL file into a *.exe file.

hstraction. Library Fomat
Mapping Table Comverime

I Instruction Matching(1:1, N:1, 1:M, N:M)

Fig. 4. Internal System Configuration of Trans-
lator

4.2.1 Data Type Mapping Table

This is the table for the basic data type mapping
used by the translator for conversion(Table 2).
There are some basic data types for Oolong code,
which are included in the 17 data types used by
MSIL.

Table 2. Data Type Mapping Table

Oolong MSIL Description
E‘;‘s: fjﬁj add addition
;Etﬁ’, fjrrr;lﬂl’ mul multiplication
newarray newarr creating array

3 string string unicode string

828 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

Table 2. Continued

byte int8 signed 8-bit
integer

short int16 un31gned 16-bit
integer

int int32 un51gned 32-bit
integer

long int64 un51gned 64-bit
integer

422 Instruction Mapping Table

Table 3 lists only the basic instructions. The

of Oolong code from java program source. The
translator used the extracted Oolong code as its
input, and translated the NET MSIL code cor-
responding to each Java Oolong code through the
mapping table and macro conversion within the

translator, which is exactly the case for program 2.

Public class ArrayTest {
public static void main()
{ int m[1={1,2,3};
for (int i=0; i<3; ++i)
system.out.println(ml[i]);

}
instructions are classified based on the MSIL, to)
which the corresponding Qolong instructions are
mapped oues doraglastiovse | lss pubtc sto eni beforeiidind AoyTest
4 «£lass public super AmayTeste i sxtends Imseedil)Sxstem Qbiegte
.super java/lang/Object + o
L Fj # Class part trawslations
. . Jing12¢ ‘
Table 3. Instruction Mapping Table 1 iconst_3¢ v
— W pesamseying -
Oolong MSIL Description 3 dupe -
u xconsl_U«: -~ 1 pewax [mscorlin}SystemInt32s
load thet Ei::f::{: 7 B: stlocd 4 L translation-
iload.0 ldarg.0 argumen 7: dupe sl et
number 0 on o » i
L geiammic jevelangSystemvouty | ¢
the stack. Lisvafie/PrintSieans “
124; aload_1e
123 iload_2»
- 16 inlosde -
N #
store a Va.lue m %ﬁ‘gﬁ%&”fmm‘hww BY: ldloc2 /i translations
istore_0 stloc.0 local variable sy %&?ﬁ
=) number O on B "“1"““‘45_\ Hoeae
the stack
Program 1. Java Program, Extracted Oolong Code
iadd add addition and Corresponding MSIL Code
imul mul multiplication
. branch if .assembly extern mscorlib
ifnonnull .
ifne btrue <value> is {
nonzero. .publickeytoken = (B7 7A 5C 56 19 34 EO 89)
store into a ~ver 1:0:3300:0
putfield stfld field of an)
object. : . . e
L - class public auto ansi beforefieldinit ArrayTest
getfield 1dfld load a ﬁeld of extends [mscorlib]System.Object
an object. {
.method public hidebysig specialname

5. EXPERIMENTAL RESULTS AND
ANALYSIS

The followings are the example of java array
program. Program 1 below depicts the extraction

rtspecialname instance void .ctor() cil managed

{

.maxstack 1

10: 1darg.0

11: call instance void [mscorlib]
System.Object::.ctor()

14: ret

}

Intermediate Language Translator for Execution of Java Programs in .NET platform 829

.method public hidebysig static void Main()
cil managed
{
entrypoint
.maxstack 4
Jocals init (int32 V_0, int32[] V_1, int32 V_2)
10: 1dc.id.3
11: newarr [mscorlib]System.Int32
13: stloc.1
Idloc.1
14: 1dc.id.0
15: 1dc.i4.1
16: stelem.i4
17: 1dloc.1
18: 1dc.id.1
19: 1dc.i4.2
110: stelem.i4
111: 1dloc.1
112: 1dci4.2
113: 1dc.i4.3
114: stelem.i4
115 nop
116: 1dc.id.0
117: stloc.2
118: br 133
121 nop
124: ldloc.1
125: 1dloc.2
126: 1delem.i4
127: call void [mscorlib]System.Console
'WriteLine(int32)
130: 1dloc.2
Idc.i4.1
add
stloc.2
133: ldloc.2
134: 1dc.i4.3
1350 bit 121
138: ret
}
}

Program 2. MSIL Code Generated by Translator

Fig. 5 shows the result of the execution after
translating the java Qolong program to NET MSIL
program and converting it into executable file. It
shows the same results from the execution of
ArrayTest.j extracted by the Oclong disassembler
from the class file generated by the Java compiler
and the execution of MSIL file ArrayTest.exe gen-

erated by the translator with ArrayTest] file as

input.

B

£ Ty fang D

Fig. 5. Execution Resuit

Table 4 shows the result of performance eval-
uation between java bytecode program in JVM and
MSIL code program in .NET platform.

Table 4. The result of Performance Evaluation

Program Java Bytecode NET MSIL
If Statement 335ms 171ms
While Statement 333ms 170ms
For Statement 339ms 171ms
While Statement 335ms 172ms
Class 338ms 165ms
Extended Class 363ms 173ms
%’;ﬁtﬁ’g“ 336ms 274ms
Thread 342ms 165ms

As the table displayed, it takes little time for
NET programs. to be executed rather than java
programs, double speed on average. Therefore,
java programs can be executed in NET platform
JVM with this bytecode-to-MSIL
translator, it improve the execution speed of java

without

applications, and provides an environment for
programmers to develop application programs

without limitations of programming languages.

830 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

6. CONCLUSIONS

After compiling, a program written in java lan-
guage is converted to bytecode, and also executed
by JVM platform but not in NET platform. For
this reason, we designed and implemented the Java
bytecode-to- NET MSIL translator system for
java programs to be executed in the. NET platform
without JVM. This work improves the execution
speed of programs, enhances the productivity, and
provides an environment for programmers to
develop application programs without limitations of
programming languages.

We are currently researching on the optimization
method to generate the better codes to speed up
and to be able to convert the entire code format

for large programs as well.

7. REFERENCES

[1] Andrew Troelsen, C# and the NET Platform,
APRESS, 2001.

[21 Bill Venners, Inside the JAVA Virtual Machine,
2nd ed., McGraw-Hill, 2000.

{31 Don Box & Chris Sells, Essential NET Volume
1 The Common Language Runtime, Addison-
Wesley, 2002.)

[4] Eric Gunnerson, A Programmer’s Introduction
to C#, APRESS, 2001.

[5] Hoshua Engel, Programming for the Java
Virtual Machine, Addison-Wesley, 1999.

[6] Jeff Prosise, Programming Microsoft .NET,
Microsoft Press, 2002.

[7] John Gough, Compiling for the .NET Common
Language Runtime(CLR), Prentice Hall, 2002.

[8] Ken Arnold & James Gosling, The Javatm
Programming Language, 3rd ed., Addison-
Wesley, 2000.

[9] Microsoft, C# Language Specification, Nov.
2000.

{10] Microsoft Corporation, Common Language
Infrastructure(CLI), Dec. 2001.

[11] Microsoft, MSIL Instruction Set Specification,
Nov. 2000.

[12] Microsoft, The IL Assembly Language Pro-
grammer’s Reference, Oct. 2000.

{13] Serge Lindin, Inside Microsoft .NET IL
Assembler, Microsoft Press, 2002.

{14] Simmon Robinson, Professional C#, Wrox,
2002.

{15] Tim Lindholm & Frank Yellin, The Javatm
Virtual Machine Specification, 2nd ed., Addison—
Wesley, 1999.

[16] Troy Downing & John Meyer, Java Virtual
Machine, OREILLY, Mar. 1997.

[17] Ralph M.Stair, Principles of Information
Systems: A Managerial Approach, Boyd &
Fraser Publishing, 1992.

[18] James A. OBrien, Management Information
Systems: A Managerial End User Perspective,
IRWIN, 1990.

[19] C.A Hsieh, M.T.Conte, & T.L.Johnson, “Java
Bytecode to Native Code Translation: the
Caffeine Prototype and Prelimi~nary Results”,
Proceedings of the IEEE 29th Annual Interna-
tional Symposium on Microarchitecture, Dec
1996.

[20] Harlan McGhan and Mike O’'Conner, “ PicoJava:
A Direct Execution Engine for Java Byte-
code”, IEEE Computer, pp.22-30, 1998.

[21] Ronald Veldema, “Jcc, A Native Java Com-—
piler’, Vrije Universiteit Amsterdam, July
1998.

[22] A Krall and R.Grafl, “CACAQO: A 64 bit Java
VM Just-in—Time Compiler”, Concurrency:
Practice and Experience,1997. http://www.
complang.tuwien.ac.at/ andi

[23] Microsoft, JLCA,; Java-Language-to-C# Con-
version Assistant, 2002. http://www.microsoft.
com/korea/press/pressroom/2002/02/02.htm

[24] Halcyon Soft, iNET, 2003. http://www.
halcyonsoft.com/

[25] Remotesoft, JavaNET, 2003. http:/www.

remotesoft.com/

Intermediate Language Translator for Execution of Java Programs in .NET Platform 831

YangSun Lee

1985 Computer Science, Dongguk
University (B.S.)

1987 Computer Engineering,
Dongguk University (M.S.)

1993 Computer Engineering,
Dongguk University (Ph.D.)

1994 ~Present Associate Pro-
fessor, Dept. of Computer Engineering, Seokyeong
University

2000~Present Director of Korea Multimedia Society

2001 ~Present Director of SIGPLAN in Korea

Research Areas : Programming Languages, Embedded

Systems, Mobile Computings

SeungWon Na

1993 Agricultural Economics,
Dankook University(B.S.)
1996 Electronic Information Man-
agement, Dankook Univer-
sity (M.S.)
2004 Computer Engineering,
Dongguk University (Ph.D.)
1997 ~Present SK Telecom Platform Researcher
Research Areas: Mobile Computing, Mobile agent,
Ubiquitous Computing, Programming
Languages

DaeHoon Hwang

1977 Mathematics,
University (B.S.)

1983 Computer Engineering,
Chungang University (M.S.)

1991 Computer Engineering,
Chungang University (Ph.D.)

1987 ~Present Professor, College

of Software, Kyungwon University

2003 ~Present chief editor of journal of Korea Mul-
timedia Society

Research Areas : XML, VRML and Internet application

Dongguk

