• Title/Summary/Keyword: Platelets

Search Result 529, Processing Time 0.032 seconds

Effect of Oriental Onion (allium fistulosum) on Platelet Aggregation (파(Allium fistulosum)에 의한 혈소판 응집 억제작용)

  • 정진호;서동철;정승민;이주영;김영식
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.4
    • /
    • pp.273-276
    • /
    • 1996
  • Platelets serve many biological functions, including a major role in the haemostatic process. But platelets also play a crucial role in the formation of arterial thrombosis, arteriosclerosis and other pathologic processes. Thus, there have been many studies to develop new antiplatelet agents from foods and plants for decades. Inthis study, inhibitory effects of the oriental onion (Allium fistulosum) on platelet aggregation were investigated using platelet rich plasma (PRP). Water extracts of oriental onion was separated into two fractions (Fraction I and Fraction II) by Sephadex G-150 column. Platelet aggregations were inhibited by total water extracts as well as Fraction I and II. IC50 value of Fraction I was much lower than that of Fraction II. Inhibitory effects of total water extracts of oriental onion on ATP release by PRP were also observed.

  • PDF

Inhibition of Cyclooxygenase/Lipoxygenase from Human Platelets by Polyhydroxylated/Methoxylated Flavonoids Isolated from Medicinal Plants

  • You, Kun-Man;Jong, Hyon-Gun;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 1999
  • Various flavonoid derivatives were previously reported to possess the inhibitory activity on cyclooxygenase/lipoxygenase. And these properties of flavonoids might contribute to their anti-inflammatory activity in vivo. In this study, several polyhydroxylated/methoxylated flavonoid derivatives such as oroxylin A. wogonin, skullcapflavone II, tectorigenin and iristectorigenin A were isolated from the medicinal plants. these compounds were evaluated fro their inhibitory effects on cyclooxygenase/lipoxygenase from the homogenate of human platelets in vitro. It was found that isoflavones including daidzein and tectorigenin possessed the inhibitory activity on cycloooxygenase, although the potency of inhibition was far less than that of indomethacin. In addition, oroxylin A, baicalein and wogonin inhibited 12-lipoxygenase activity without affecting cyclooxygenase, which suggested that 5,6,7- or 5,7,8-trisubstitutions of A-ring of flavone gave favorable results. The IC50 values of oroxylin A and NDGA against 12-lipoxygenase were found to be 100 and 1.5 uM, respectively.

  • PDF

Chemically Modified Graphenes: Chemistry and Applications

  • Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.8-8
    • /
    • 2011
  • During the last half decade, chemically modified graphene (CMG) has been studied in the wide range of applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), inks, actuators, and biomedical applications due to its excellent electrical, mechanical, and thermal properties. Chemical modification of graphene oxide, which is generated from graphite oxide, which is produced by simple oxidation of graphite, has been a promising route to achieve mass production of CMG platelets via their colloidal suspensions. Graphene oxide contains a range of reactive oxygen functional groups, which renders it a good candidate for use in the aforementioned applications (among others) through chemical functionalizations. In this presentation, I will discuss my recent research activities on the fundamental chemistry of graphite oxide, as well as novel applications based on CMGs. Topics will include the chemical structure of CMGs and colloidal suspensions of CMG platelets, as well as a wide variety of applications.

  • PDF

Microstructure and Mechanical Properties of Platelet Reinforced Mullite-Zirconia Composites (Platelet 강화 Mullite-Zirconia 복합체의 미세구조와 기계적 성질)

  • 박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.757-764
    • /
    • 1992
  • The platelet reinforced mullite-zirconia composites were prepared by pressurelss sintering with addition of Al2O3 or SiC platelets. The sintered density of 10 vol% Al2O3 platelet reinforced mullite-zirconia composite was 98.3% at 1700$^{\circ}C$. The fracture strength (290 MPa) and fracture toughness (4.9 MPa$.${{{{ SQRT { m} }}) in the Al2O3 platelet reinforced mullite-zirconia composite were enhanced compared with those of mullite-zirconia due to the crack deflection and load transfer effect of platelets. Whereas, the SiC platelet reinforced mullite-zirconia composite sintered at 1650$^{\circ}C$ showed relatively lower density (95.7%), fracture strength (170 MPa), and fracture toughness (3.9 MPa$.${{{{ SQRT { m} }} than the Al2O3 platelet reinforced mullite-zirconia composite.

  • PDF

Mechanism of Vibrio vulnificus Cytolysin on Rat Platelet Aggregation (Vibrio vulnificus cytolysin의 흰쥐 혈소판 응집 기전)

  • 김현철;채수완;이병창;은재순
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.802-808
    • /
    • 1999
  • Vibrio vulnificus cytolysin has been incriminated as one of the important virulence determinants in V. vulnificus infection. In the present study, the effects of Vibrio vulnificus cytolysin on platelets were examined. Vibrio vulnificus cytolysin induced platelet aggregation and increased intracellular calcium concentration ($[Ca^{2+}]_i$) of rat platelets. These effects were abolished in $Ca^{2+}-free$ buffer (2 mM EGTA). Cytolysin also potentiated ADP-and collagen-induced platelet aggregation. Lanthanum (2 mM) inhibited cytolysin-diduced platelet aggregation. However, another $Ca^{2+}$ channel blockers, verapamil ($20{\;}{\mu}M$) or mefenamic acid ($20{\;}{\mu}M$) did not block cytolysin-induced platelet aggregation. Osmotic protectants, sucrose (50 mM) and raffinose (50 nM) suppressed platelet aggregation by 35.9% and 63.4%, respectively. V. vulnificus cytolysin increased membrane conductances of platelet membranes. These results suggest that cytolysin-induced platelet aggregation is mediated via lanthanum sensitive-calcium influx which resulted from the pore formation by V. vulnificus cytolysin.

  • PDF

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.

Gallocatechin Gallate Inhibits Platelet Aggregation by Arachidonic Acid Liberation and $TxA_2$ Synthase Activity

  • Cho, Mi-Ra;Lee, Kyung-Sup;Lee, Jung-Jin;Jin, Yong-Ri;Son, Dong-Ju;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.78.2-78.2
    • /
    • 2003
  • We have previously reported that green tea catechins (GTC) displayed anti-thrombotic activity, and that this might be due to anti-platelet rather than anti-coagulation effects. In the present study, we have studied the anti-platelet activity and mechanism of gallocatechin gallate (GCG), which is a component of GTC. GCG inhibited the collagen- and U46619-induced aggregation of rabbit platelets, with IC$\^$50/ values of 63.0 and 48.3 ${\mu}$M, respectively. GCG also inhibited collagen-induced serotonin release and TxB$_2$ formation in a similar manner of platelets aggregation. (omitted)

  • PDF

Inhibitory Effects of Euchrestaflavone B on Thrombus Formation via Regulation of Cyclic Nucleotides in Collagen-induced Platelets (콜라겐 유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Euchrestaflavone B의 혈전 형성 억제 효과)

  • Kwon, Hyuk-Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.231-237
    • /
    • 2020
  • Euchrestaflavanone B (EFB) is a flavonoid that can be found in root bark, particularly in Cudrania tricuspidata (C. tricuspidata). The extract of C. tricuspidata is widespread throughout Asia and used in traditional medicine. In a previous study, we found anti-platelet effects of substances isolated from C. tricuspidata on collagen-induced human platelets. However, the C. tricuspidata still contains numerous substances, thus, we have searched new candidate, EFB isolated from C. tricuspidata for anti-platelet effect. Our results showed that EFA inhibited collagen-induced platelet aggregation and glycoprotein IIb/IIIa (αIIb/β3)-mediated signaling events, including platelet adhesion, granule secretion, thromboxane A2 production and clot retraction. These results suggest that EFA has inhibitory effects on human platelet activities and thrombus formation and has potential value as a natural substance for preventing platelet-induced thrombosis.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.