• Title/Summary/Keyword: Plate structure

Search Result 2,421, Processing Time 0.031 seconds

Dynamic and static structure analysis of the Obermeyer gate under overflow conditions

  • Feng, Jinhai;Zhou, Shiyue;Xue, Boxiang;Chen, Diyi;Sun, Guoyong;Li, Huanhuan
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In order to analyze the static and dynamic structural characteristics of the Obermeyer gate under overflow conditions, the force characteristics and vibration characteristics of the shield plate structure are studied based on the fluid-solid coupling theory. In this paper, the effects of the flow rate, airbag pressure and overflow water level on the structural performance of shield plate of air shield dam are explored through the method of controlling variables. The results show that the maximum equivalent stress and total deformation of the shield plate decrease first and then increase with the flow velocity. In addition, they are positively correlated with the airbag pressure. What's more, we find that the maximum equivalent stress of the shield plate decreases first and then increases with the overflow water level, and the total deformation of the shield plate decreases with the overflow water level. What's more importantly, the natural frequency of the shield structure of the Obermeyer gate is concentrated at 50 Hz and 100 Hz, so there is still the possibility of resonance. Once the resonance occurs, the free edge of the shield vibrates back and forth. This work may provide a theoretical reference for the safe and stable operation of the shield of the Obermeyer gate.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Experimental Study on the Machenical Properties of Composite Beam Composed End Reinforced Concrete and Center Steel (RC-S 복합보의 역학적 특성에 관한 실험적 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.675-682
    • /
    • 2002
  • The beam of composite structure composed of the RC structure in the end part and steel structure in the central palt were investigated during cyclic loading, in order to evaluate strength, stiffness, and deformational capacity. The parameters used in this study include the amount of reinforced steel bar between the steel beam and RC structure and the existence of the sticking plate. Test results showed that all specimens had stabilized hysteresis loops. Likewise, the specimens with sticking plate had higher load-carrying capacity compared with the one without it. In addition, the stiffness of the composite structure was higher than the steel structure. All specimens also showed good rotational capacity.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

A Study on the Behavior of Wall-Support Joint of Steel Plate-Concrete Structure (SC(강판-콘크리트)구조 브라켓 접합부 거동에 관한 연구)

  • Kim, Woo Bum;Kim, Kang Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.377-385
    • /
    • 2004
  • An experimental and analytical study on the behavior of the wall-support joint in SC(steel plate-concrete) structure was performed. Nine full-scale specimens were tested with a horizontal monotonic load, all acting in the same plane, causing a uni-axial moment on the SC structure's wall-support beam joint. The main focus is to examine thenonlinear behavior and ultimate strength of the SC wall-support joint. The effects of parameters, such aslocation of support, thickness of the steel plate, and size of support, were studied. The yield strength and ultimate strength of the plate-concrete wall was defined by examining the load-deflection relationship, showing the tension membrane action.

Analysis of Welding Distortion of Large Steel Plate by Using Analytical Solution of Temperature Distribution and Finite Element Method (온도분포 해석 해와 유한요소법을 이용한 대형 강판의 용접변형 해석)

  • Hong, Sung-Bin;Bae, Kang-Yul;Yang, Young-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Welding distortions of large steel structures had mainly been estimated with some simplified formula obtained by lots of experience and numerical analyses for small steel structures. However, the large structures would have different characteristics of distortion with welding because of their own stiffness coming from the size itself. Therefore, in order to find some measures for preventing welding distortion of large structure, it is requite in advance to precisely analysis thermal stress and distortion during welding of the structure. Numerical analysis for larger structure has been known to take large amount of calculation time and have a poor convergency problem during the thermo-elasto-plastic calculation. In this study, a hybrid method is proposed to analysis the thermal stress and distortion of a large steel plate with the finite element analysis by incorporating with temperature distribution of the plate calculated by an analytical solution. The proposed method revealed that the thermo-mechanical analysis for welding of the large structure could be performed with a good convergence and produced precise results with much reduced time consumption.

An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint (철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hahm, Kyung-Won;Park, Dong-Soo;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This paper describes the experimental study on the mechanical characteristics of a steel plate-reinforced concrete joint. As an alternative reinforced concrete structure, the SC modular construction method is widely used and studied in the field ofindustrial facility field. However, the structure characteristics of RC and SC joint are not yet studied completely. In this paper, the beam-type construction joint of RC and SC walls was made to simulate the application of SC module to the large RC structure. Also, an out-of-plane loading was applied to the test specimen in order to evaluate flexural strength and structural properties of the beam-type RC-SC joint.

A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple (미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구)

  • Je T.J.;Kim H.J.;Kim B.H.;Huh B.W.;Seong D.Y.;Yang D.Y.;Choi D.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.