• Title/Summary/Keyword: Plate reinforcement

Search Result 415, Processing Time 0.02 seconds

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.

Evaluation of Effect for Connector System in Reinforced Earth Retaining Wall (보강토 옹벽에서 연결시스템의 영향성 평가)

  • Lee, Jun-Dae;Heo, Yol;Ahn, Kwang-Kuk;Lee, Yong-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, in order to evaluate the effect of two types of connector systems in reinforced retaining wall, the centrifugal tests for the conventional connector and new settlement connector system were performed. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The granite soil was adopted as a fill. As a result, The settlement reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. In addition, it was shown that the settlement connector system is more effective to release the stress concentration occurred at the face of reinforced retaining wall than the conventional connector system.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.

The use of ferrocement in the construction of squat grain silos

  • Topcuoglu, Kivanc;Unal, Halil Baki
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.53-68
    • /
    • 2016
  • In this study, an investigation is made from the statics and economic aspects of the possibility of using the composite material ferrocement on the surfaces of squat cylindrical grain silos. For this purpose, the geometry of two model silos, each of height 5 m and diameter 5 m and 12.5 m, was designed. Five different reinforced plates of 10 and 20 mm thickness were produced to research the most suitable ferrocement plates to be used on the surface of these silos. Most durable reinforcement type for covering the silo surface was determined by pressure and bending tests. Grade 30 and Grade 55 steel plates were also considered for use in covering steel-coated silos. In the statics analysis performed with SAP2000, the least plate thicknesses needed for silos surfaced with Grade 30 and Grade 55 steel were found to be 6.20 mm and 4.70 mm respectively for silos of diameter 5 m, and 6.70 mm and 5.00 mm for silos of diameter 12.5 m. In the economic analysis, it was found that 20 mm thick Type 4 (with a wire diameter of 0.30 mm and a mesh aperture of $2mm{\times}2mm$ square type) reinforced ferrocement surfacing material was 5.6-6.1 times more economical than Grade 30 steel surfacing material and 4.4-4.7 times more economical than using Grade 55 steel. These results show that ferrocement can be used in place of steel from the point of view both of statics and economy.

Design and Output Characteristic of AC Pulse Current for MIG Welding of Ai Sheet (박판 Al MIG 용접용 AC펄스 전류 파형의 설계 및 출력특성)

  • 조상명;김태진;이창주;임성룡;공현상;김기정
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Since new types of vehicles or structures made from thin aluminum alloy are under rapid development and some products are already on the market, welding of aluminium sheet is increasing. MIG(Metal Inert Gas), MIG-Pulse, TIG(Tungsten Inert Gas) welding are the typical Ai welding. MIG welding has the advantage of high speed, but it is difficult to apply to the thin plate, because of bum-through by the high heat input and spatter. MIG-Pulse welding can weld without spatter and burn-through, but when the gap exists at the welding joint, there is quite a possibility of bum-through. TIG welding is difficult to weld at a high speed. AC Pulse welding alternates between DCEP(Direct Current Electrode Positive) and DCEN(Direct Current Electrode Negative). DCEN is higher wire melting rate than DCEP, while lower temperature of droplet than DCEP. In AC Pulse welding, far fixed welding current, wire melting rate increases as the EN ratio increases. For fixed wire feed rate, welding current decreases as the EN ratio increases. Because of these features, the temperature of droplet, the depth of penetration, the width of bead decrease and the reinforcement height increases as EN ratio increases, and these are able to weld at a high speed, lower heat input. It is the purpose of this study that design of AC pulse current waveform for MIG welding of Al sheet and estimation of output characteristic.

Reinforcing Effect of Geocell on Soft Soil Subgrade for High-speed Railroad (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 조삼덕;윤수호;김진만;정문경;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.5-12
    • /
    • 2002
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell which is used to reinforce soft subgrade for high-speed railroad. Efficiency of geocell was observed in the increase in bearing capacity of subgrade and in the reduction of thickness of reinforced sub-ballast. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times larger than that of a crushed stone layer of the same thickness substituted for the geocell and cover soil layer Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

Behavioral Performance Evaluation of the Moment-Resisting Frame Models Equipped with Seismic Damage Mitigation Systems (지진피해 저감 시스템을 설치한 모멘트 프레임의 거동성능 평가)

  • Joe, Yang Hee;Son, Hong Min;Hu, Jong Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.311-322
    • /
    • 2017
  • In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.

Application of waste rubber to reduce the settlement of road embankment

  • Tafreshi, S.N. Moghaddas;Norouzi, A.H.
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.219-241
    • /
    • 2015
  • In this paper, a series of repeated load tests were carried out on a 150 mm diameter plate simulative of vehicle passes, to demonstrate the benefits of soil-rubber shred mixture in decreasing the soil surface settlement of road embankment. The results show that the efficiency of rubber reinforcement is significantly a function of the rubber content, thickness of rubber-soil mixture and soil cap thickness over the mixture. Minimum surface settlement is provided by 2.5% of rubber in rubber-soil mixture, the thickness of mixture layer and soil cap of 0.5 times the loading surface diameter, giving values of 0.32-0.68 times those obtained in the unreinforced system for low and high values of amplitude of repeated load. In this installation, in contrast with unreinforced bed that shows unstable response, the rate of enhancement in settlement decreases significantly as the number of loading cycles increase and system behaves resiliently without undergoing plastic deformation. The findings encourage the use of rubber shreds obtained from non-reusable tires as a viable material in road works.

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.