• Title/Summary/Keyword: Plate heat exchangers

Search Result 146, Processing Time 0.024 seconds

A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples (딤플이 있는 판형 열교환기 관내측 열유동 최적화)

  • 이관수;시종민;정길완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF

Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel (주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구)

  • 김태용;이재용;김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

Study on Pressure Drop and Condensation Heat Transfer Characteristics of R-404A in Brazed Plate Heat Exchanger (R-404A를 사용한 용접형 판형 열교환기의 압력강하 및 응축 열전달특성에 관한 연구)

  • 권오갑;전창덕;강종식;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • Experimental study has been carried out on the characteristics of pressure drop and heat transfer of brazed plate heat exchangers using R-404A. Data are presented for the following range of variables: the mass flux ($20~80kg/m^2s$), chevron angle($20^{circ}C,\;35^{circ}C,\;45^{circ}C$) and inlet pressure of he refrigerant (1.4 and 1.6 MPa). for both subcooled and tow-phase flow, as chevron angle increases, pressure drop and heat transfer coefficient decrease. Condensation hat transfer coefficient and pressure drop was compared with the previously proposed correlations. Among them, Traviss correlation agreed with experimental results within -35~82% for heat transfer coefficient and -73~93% for pressure drop.

  • PDF

Effect of Louvered Positions on Air-Side Heat Transfer in Louvered Fin Heat Exchangers (루우버 위치(位置)가 루우버핀 열교환기(熱交換器)의 공기측열전달(空氣側熱傳達)에 미치는 영향(影響))

  • Kim, S.J.;Chung, T.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.99-104
    • /
    • 1990
  • A Study has been conducted experimentally on heat transfer characteristics of louvered fin heat exchangers with various louvered positions in air. The experimental results are as follows; 1. Mean heat transfer coefficient is increased with increasing air velocity and decreasing temperature difference. The maximum value of heat transfer coefficient shows at 10㎜ backward louvered fins. 2. Pressure drop is increased with increasing air velocity and apparently depended on the louvered positions at V>10m/sec. 3. $\bar{h}/{\Delta}P$ is decreased with increasing air velocity and its maximum value shows at 10mm forward louvered fins and its minimum value shows at plate fins.

  • PDF

Performance Evaluation of Scale Mitigation Unit for Heat Exchangers (열교환기에 대한 스케일 완화장치의 성능평가)

  • Mo, Jeong-Ha;Sin, Sang-Cheol;Kim, Gyeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1149-1156
    • /
    • 2001
  • The objective of the present study is to investigate the performance of electronic scale mitigation unit(ESMU), which reduces the amount of scale in a heat exchanger. The circular tube with diameter of 19mm and plate-and-frame heat exchangers with 20 thermal plates were used for the tests. In order to accelerate the rate of scale in a laboratory test, artificial hard water of 1000ppm(as CaCO$_3$) was recirculated at a flow rate of 5 lpm, 7 lpm, and 9 lpm throughout the tests. The effect of ESMU on the scale thickness and overall heat transfer coefficients was examined. The test results showed that the ESMU could reduce the scale deposits even in the acceleated test.

An Experimental Study of the Airside Performance of Slit Fin-and-Tube Heat Exchangers under Dry and Wet Conditions

  • Chang, Keun-Sun;Long, Phan-Than
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Water condensate accumulated on the surface of a fin-and-tube heat exchanger significantly affects its thermal and hydraulic performances. The purpose of this study is to investigate the effects of condensate retention on the air-side heat transfer performance and flow friction for various flow and geometric conditions. Total of twelve samples of slit and plate fin-and-tube heat exchangers are tested under dry and wet conditions. The thermal fluid measurements are made using a psychrometric calorimeter. Frontal air velocity varies in the range from 0.7 m/s to 1.5 m/s. Using the experimental data, presented are heat transfer coefficients in terms of Colburn j-factors and friction factors, and these data are compared with the existing correlations.

Simulation of a Polymer-Water Adsorption Refrigerator using Plate-Type Adsorption Heat Exchangers (판형 흡착열교환기를 사용한 폴리머-물 흡착식 냉동기의 성능예측)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • A hydroscopic polymer is used as the adsorbent in an adsorption refrigeration system. A pair of plate-type heat exchangers, thinly coated with the polymer, is simulated using a two-dimensional transient model to predict performance of the system. It is predicted that the system would yield 0.57 kW SCP and 0.47 COP at $80^{\circ}C$ heating and $30^{\circ}C$ cooling temperatures. In comparison with a conventional silica gel-water system, the COP is comparable but SCP is about three times larger. The slow mass diffusion rate of the polymer should be improved for better performance.

Experimental Study on R-22 Condensation Heat Transfer Characteristic in Plate and Shell Heat Exchanger (Plate and Shell 열교환기 내의 R-22 응축열전달 특성에 관한 실험적 연구)

  • Seo, Mu-Gyo;Park, Jae-Hong;Kim, Yeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.860-867
    • /
    • 2001
  • In this study, condensation heat transfer experiments were conducted with plate and shell heat exchangers(P&SHE) using R-22. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-22 in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45°. Downflow of the condensing R-22 in one channel releases heat to the cold upflow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-22 on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. A rise in the refrigerant mass flux causes an increase in the h(sub)r. Also, a rise in the average heat flux causes an increase in the h(sub)r. Finally, at a higher system pressure the h(sub)r is found to be slightly lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

Experimental Study on Heat Transfer Performance of Absorber with Variable Plate Types

  • M.A. Sarker;Moon, C.G.;Lee, H.S.;Kim, E.P.;Yoon, J.I.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.201-212
    • /
    • 2004
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of developing high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is important to improve the performance of absorber with the larger heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which could increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, that is, horizontal tube bundle type. The size of plate absorbers were made for 0.4m$\times$0.6m and the design objective of a refrigeration capacity was 1RT. In this experiment, three kinds of plate absorbers namely flat plate, dimple plate and groove plate were used. The obtained results were less than the design objective values, that is, the refrigeration capacity was about 0.3 ~0.4RT and the overall heat transfer coefficient was 500~600 kcal/$m^2$h$^{\circ}C$ at the standard conditions.

  • PDF

Experimental Study on Heat Transfer Performance of Plate Type Absorber with Variation of Solution Flow Rate (용액유량에 따른 플레이트 흡수기의 흡수 열전달 특성 실험)

  • Moon, C.G.;Bang, G.S.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1548-1553
    • /
    • 2003
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of development of high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which can increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, horizontal tube bundle type. The size of plate absorbers were made for $0.4m{\times}0.6m$ and the design object of a refrigeration capacity was lRT. In this experiment, three kind plate absorbers which were flat plate, dimple plate and groove plate were used. The results were less than the design object values, that is, the refrigeration capacity was about $0.3{\sim}0.4RT$ and the overall heat transfer coefficient was $500{\sim}600kcal/m^2h^{\circ}C$ at the standard conditions.

  • PDF