• Title/Summary/Keyword: Plate fuel elements

Search Result 16, Processing Time 0.019 seconds

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Development and Evaluation of Gasket for Polymer Electrolyte Membrane Fuel Cell Stacks (고분자 전해질 연료전지 가스켓 설계 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • The design and fabrication of a metallic bipolar plate-gasket assembly for polymer electrolyte fuel cells (PEMFCs) is defined. This bipolar plate-gasket assembly was prepared by inserting a previously prepared bipolar plate in the specially designed gasket mold. For this aim, a proprietary fluoro-silicone based rubber was injected directly into the bipolar plate borders. Gaskets obtained like this showed the chemically / physically stable and the good sealibilty in typically operating PEM fuel cell conditions. And also, this bipolar plate-gasket assembly shows lots of advantages with respect to traditional PEMFCs stack assembling systems: useful application to automative stacking due to easy handling, reduced fabrication time, possibility of quality control and failed elements substitution. This bipolar plate-gasket assembly was evaluated in the short fuel cell stack and met the leakage requirement for normal operation both in short-term and in long-term operation. Especially, it was confirmed that this gasket could be applied successfully even in the high pressure FEM fuel cell systems(over 2.0 bar in absolute pressure).

  • PDF

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.

A Study for the Improvement of Top End Piece Structural Strength (상단고정체의 구조강도 개선을 위한 연구)

  • Song, Kee-Nam;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 1989
  • As a part of the design of the top end piece(TEP) for the 14$\times$14 reload fuel, various models of top end piece structure were analysed, using the ANSYS code, under fuel assembly shipping and handling load conditions. The 3-dimensional isoparametric elements were used in each model. By rearrangement of slots and holes on the adapter plate, without violating the design requirements, and also by changing the enclosure attachment method used on the adapter plate from pin joints to through-weld, the load carving capacity of the adapter plate was greatly strengthened. These concepts were adopted for the design of the 14$\times$14 reload fuel.

  • PDF

Selection of burnable poison in plate fuel assembly for small modular marine reactors

  • Xu, Shikun;Yu, Tao;Xie, Jinsen;Li, Zhulun;Xia, Yi;Yao, Lei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1526-1533
    • /
    • 2022
  • Small modular reactors have garnered considerable attention in the recent years. Plate fuel elements exhibit a good application prospect in small modular pressurized water reactors for marine applications. Further, improved economic benefits can be achieved by extending the core lifetime of small modular reactors. However, it is necessary to realize a large initial residual reactivity for achieving a relatively long burnup depth finally. Thus, the selection of a suitable burnable poison (BP) is a crucial factor that should be considered in the design of small modular reactors. In this study, some candidate BPs are selected to realize the effective control of reactivity. The results show that 231Pa2O3, 240Pu2O3, 167Er2O3, PACS-J, and PACS-L are ideal candidates of BP, and since the characteristics of BP can increase the final burnup depth of assembly, the economic benefits are gained. Additionally, an optimal combination scheme of BPs is established. Specifically, it is proved that through a reasonable combination of BPs, a low reactivity fluctuation during the lifetime can be achieved, leading to a large final burnup depth.

Improvement of Production Process based on Performance Evaluation System of Unified Heater (통합히터 성능평가장치를 통한 생산 공정 개선)

  • Han, Woo-Hyun;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.114-118
    • /
    • 2014
  • This paper presents improvement of the production process of a unified fuel heater with the help of the performance evaluation system. In order to enhance a starting capability of diesel-engine car, the unified fuel heater is proposed, which consists of main body, upper plate, stopper, lower plate, PTC, screw, bimetal and terminals. In the proposed heater, the sensor is combined with heater body not only to maximize the performance of car but also to reduce the production cost. The performance test chamber is proposed to evaluate the performance of heater. Especially, an effective manufacturing progress for assembling the heater elements can cut down expenses.

CFD analysis of the flow blockage in a rectangular fuel assembly of the IAEA 10 MW MTR research reactor

  • Xia, Shuang;Zhou, Xuhua;Hu, Gaojie;Cao, Xiaxin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2847-2858
    • /
    • 2021
  • When a nuclear reactor with rectangular fuel assemblies runs for a long time, impurities and debris may be taken into coolant channels, which may cause flow blockage, and the blocked fuel assemblies might be destroyed. Therefore, the purpose of this study is to perform a thermal-hydraulic analysis of a rectangular fuel assembly by STAR-CCM+, under the condition of one subchannel with 80% blockage ratio. A rectangular fuel assembly of the International Atomic Energy Agency (IAEA) 10 MW material test reactor (MTR) is chosen. In view of the gasket material taken into the coolant channel is close to the single side of the coolant channel, in the flow blockage accident of the Oak Ridge Research Reactor (ORRR), a new blockage category called single side blockage is attempted. The blockage positions include inlet, middle and outlet, and the blockage is set as a cuboid. It is found by simulations that the blockage redistributes the mass flow rate, and large vortices appear locally. The peak temperature of the cladding is maximum, when the blockage is located at the single side of the coolant channel inlet, and no boiling occurs in all blockage cases. Moreover, as the height of the blockage increases, the damage caused by the blockage increases slightly.

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

A Basic Study on the Effect of the Wind Pressure according to Form on the Flat Roof mounted PV System (평지붕 PV거치 시스템의 형태에 따른 풍압영향에 관한 기초연구)

  • Yun, Doo-Young;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • The new renewable energy became popular as a clean and sustainable alternative energy under the circumstances that the entire world is facing severe abnormal climate due to the use of fossil fuel, and among which, solar energy can be obtained anywhere and is not difficult to apply it into the existing buildings, which makes it possible to be widely distributed. However, as PV module is installed into a single plate system, it shows structural weaknesses which are vulnerable to wind load and give loss to design elements in external appearance. Accordingly, this study planned one-step parallel system to complement the problems occurring from a single plate system and used STAR-CCM+ V.8 made by CD-Adapco, a computational fluid dynamics(CFD) simulation tool to measure wind load stability and support based on the design standards for a single plate system and one-step parallel system. Building height was limited to less than 10m and wind speed was given when increasing from 35m/s to 50m/s by 5m/s on PV system installed into the flat roof. In this case, our analysis suggested that step-one parallel system was in class 7-9 according to Beaufort's wind power classification, which did not have an impact on the fixed PV system, and the single plate system is considered to cause risks in designing wind speed in central districts because it is more than wind power class 12.

A Study on Manufacture and Design of Low Voltage.Low Electric Power System by PEMFC Single cell (PEMFC 단위 셀의 제작 및 저전압.저전력 시스템 설계에 관한 연구)

  • Ryu, Yun-Sim;Ahn, Ho-Gyun;Seo, Jung-Rang;Kim, Sung-Hoon;Lee, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.193-195
    • /
    • 2007
  • These days, to change the new & renewable energy change the subject because environmental pollution and exhausted fossil power. The most notable Fuel cells by one of the new & renewable energies are one of very useful power conversion sources. Their advantages are low environmental pollution, highly efficient power generation, diversity of fuels (natural gas, LPG, methanol and naphtha), and reusability of exhaust heat, modularity, and faster installation. PEMFC by one of the Fuel Cells is the energy of new technology which is produced by the electric chemical reaction directly. The essential composition elements of PEMFC stack are membrane electrode assembly (MEA), catalyst, Bipolar Plate. Under the this study, know-how is manufacturing single cell of PEMFC and Study design of Low Voltage, Low Electric Power System by PEMFC Single Cell.

  • PDF