• 제목/요약/키워드: Plate and Shell Heat Exchanger

검색결과 46건 처리시간 0.032초

Plate & Shell 열교환기내에서 R-718의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer and Pressure Drop Characteristics for R-718 in Plate and Shell Heat Exchanger)

  • 강석현;서무교;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.270-275
    • /
    • 2000
  • In this study, heat transfer and Pressure drop characteristics for R-718 in the plate and shell heat exchanger (P&SHE) investigated experimentally. The plates are circular and welded into a stack which fits into a cylindrical shell in P&SHE. Although apparently very different from rectangular the compact brazed plate heat exchanger (CBE), the underlying flow passage structure through the P&SHE is the same as in the CBE. The R-718 between plate side and shell side was performed a counterflow heat exchange. Heat transfer characteristic of R-718 were measured for turbulent flow in P&SHE by using wilson plot technique. Heat transfer experiment Ivas performed in the $200{\leq}Re{\leq}500$ regime and Pressure drop experiment was performed in the $150{\leq}Re{\leq}1600$ regime. The purpose of this study is to investigate heat transfer and friction factor correlations for R-718 in P&SHE and to offer fundamental data for experiment

  • PDF

원자력발전소 기기냉각수계통의 판형열교환기 적용성 (Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor)

  • 임혁순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구 (Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger)

  • 박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구 (An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구 (Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger)

  • 김성우;백창현;송강섭;김용찬
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.

오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 증발 열전달에 관한 실험적 연구 (Study on Evaporation Heat Transfer of R-l34a, R-407C, and R-410A in the Oblong Shell and Plate Heat Exchanger)

  • 박재홍;김영수
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.845-854
    • /
    • 2004
  • The evaporation heat transfer coefficient for R-l34a, R-407C (a mixture of 23wt% R-32, 25 wt% R-125, and 52 wt% R-l34a) and R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the exchanger by four plates of commercial geometry with a corrugated sinusoid shape of a chevron angle of 45 degree. The effects of the mean vapor quality, mass flux, heat flux, and saturation temperature of different refrigerants on the evaporation heat transfer were explored in detail. Similar to the case of a Plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. It is found that the evaporation heat transfer coefficient in the plates is much higher than that in circular pipes. The present data show that the evaporation heat transfer coefficients of all refrigerants increase with the vapor quality. At a higher mass flux h, is higher than for the entire range of the vapor quality. Raising the imposed wall heat flux was found to slightly improve h$_{r}$, while h$_{r}$ is found to be lower at a higher refrigerant saturation temperature. A comparison of the performance of the various refrigerants reveals that R-410A has the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. Based on the present data, empirical correlations of the evaporation heat transfer coefficient were proposed.sed.

판형쉘열교환기 기본설계를 위한 경향성 분석 (Trend Analysis for Basic Design of a Plate and Shell Heat Exchanger)

  • 최동현;장윤석;강선예
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.69-76
    • /
    • 2022
  • In order to prepare for a future nuclear market, research for developing floating small modular reactor has been initiated with the aim of differentiating it from large nuclear power plants such as distributed power, heat supply to remote communities and sea water desalination. Depending on the characteristics of the small modular reactor, it is necessary to design a plate and shell heat exchanger that can be manufactured smaller than the U-tube recirculation method. In this study, 12 cases are selected by changing the diameter of the heat plate, the thickness of the device body and the size of the stiffener. Finite element analysis is performed by setting the stress classification lines for the point at which deformation is expected under external pressure conditions for these analysis cases. For the basic design of the plate and shell heat exchanger, the optimal conditions are derived by analyzing the tendency of stress change in the device body and stiffener.

동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교 (Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area)

  • 함정균;김민준;안성국;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

배플수에 따른 원통다관형 열교환기 성능에 관한 실험 적 연구 (An Experimental Study of Shell and Tube Heat Exchanger Performance with Baffle Spacing)

  • 이육형;김순영;박명관
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1748-1755
    • /
    • 2001
  • The shell and tube heat exchangers were introduced to apply to a big capacity condenser and a high pressure feed water heater for power plant in the beginning of 1990s. Design and manufacturing technology fur shell and tube heat exchangers have been developed until now. But it is very difficult to calculate the expected performance characteristics of the shell and tube heat exchanger, because there are many design parameters to be considered according to internal structure and the shell side heat transfer mechanism complicately related to the design parameters. Design parameters to be considered in the design stage of shell and tube heat exchanger are shell and tube side fluids, flow rate, inlet and outlet temperature, physical properties, type of heat exchanger, outer diameter, thickness, length of tube, tube arrangement, tube pitch, permissive pressure loss on both sides, type of baffle plate, baffle cutting ratio. The propose of study is an analysis TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with changing a number of baffles(3, 5, 7, 9, 11) and tubes(16, 20) and determined optimal baffle spacing.