• Title/Summary/Keyword: Plate and Shell 열교환기

Search Result 37, Processing Time 0.028 seconds

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor (원자력발전소 기기냉각수계통의 판형열교환기 적용성)

  • Lim, Hyuk-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

Fouling Characteristics of Washable Shell and Coil Heat Exchanger (세척이 가능한 원통 코일형 열교환기의 파울링 특성에 관한 연구)

  • Hwang, Jun Hyeon;Na, Byung Chul;Oh, Sai Kee;Koo, Kyoung Min;Lee, Jae Keun;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • In this work, we studied the shell and helically coiled tube heat exchangers. Shell and coil heat exchangers with different rate of water flow and plate heat exchanger with same capacity were tested for condensing conditions. We proposed design guide using modified Wilson plot method. We compared fouling characteristics between shell and coil heat exchanger and plate heat exchanger, when they were washed and were not washed. The shell and coil heat exchanger showed 120% of higher saturated fouling resistance value and 4% of better heat transfer ratio than the plate heat exchanger.

Study on Single-Phase Heat Transfer, Pressure Drop Characteristics and Performance Prediction Program in the Oblong Shell and Plate Heat Exchanger (Oblong 셀 앤 플레이트 열교환기에서의 단상 열전달, 압력강하 특성 및 성능예측 프로그램 개발에 관한 연구)

  • 권용하;김영수;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1036
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with Oblong Shell and Plate heat exchanger using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient and pressure drop in a vertical Oblong Shell and Plate heat exchanger. Downflow of hot water in one channel receives heat from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the Oblong Shell and Plate heat exchanger remains turbulent. The present data show that the heat transfer coefficient and pressure drop increase with the Reynolds number. Based on the present data, empirical correlations of the heat transfer coefficient and pressure drop in terms of Nusselt number and friction factor were proposed. Also, performance prediction analyses for Oblong Shell and Plate heat exchanger were executed and compared with experiments. $\varepsilon$-NTU method was used in this prediction program. Independent variables are flow rates and inlet temperatures. Compared with experimental data, the accuracy of the program is within the error bounds of $\pm$5% in the heat transfer rate.

Study on Heat Transfer Characteristic of Shell-and-Tube Heat Exchanger with Plate Fin (판형 핀을 가진 원통-다관형 열교환기의 열전달 특성에 관한 연구)

  • Lim, Tae-Woo;Cho, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this work, the experimental investigation was carried out to evaluate the heat transfer performance on the shell side of shell-and-plate finned tube heat exchanger with three different tube numbers(9, 13 and 19). Oil flowing on the shell side was cooled by cold water flowing inside the tubes. A shell-and-tube heat exchanger of an oil cooler consisted of one shell pass and two tube passes with the inner tube diameter of 8.82 mm and the tube length of 575 mm. Mass flow rate was varied from 1.2 to $6.0\;m^3/h$ for oil and from 0.6 to $3.0\;m^3/h$ for cold water, respectively. From the experiment of shell-and-plate finned tube heat exchanger, the overall heat transfer coefficient of heat exchanger with 9 tubes was compared with that of 13 and 19 tubes. It was found that the heat transfer coefficients in shell side of heat exchanger with 9 plate finned tubes showed averagely 1.8 times and 2.3 times higher than those of 13 and 19 tubes, respectively.

A Study on the Performance Analysis in the Plate and Shell Heat Exchanger (판각형 열교환기 성능해석에 관한 연구)

  • Seo, M.K.;Park, J.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • Heat exchangers are called with important devices which have been widely used in industrial fields. Therefore, the design method for a heat exchanger is an important study in the aspect of energy saving. In this study, performance analyses for two types of plate and shell heat exchangers having a corrugated trapezoid shape of a chevron angle with $45^{\circ}$, were executed and compared with experiments. For this study, the operation liquids were adopted with non-phase changing water. In the analysis, ${\epsilon}-NTU$ method was used for a plate and shell heat exchanger and a program was constructed. Independent variables for a plate and shell heat exchanger are flow rate and inlet temperature. Compared with experimental data, the accuracy of the developed are ${\pm}2.5%\;and\;{\pm}5%$ at the type A and type B in the heat transfer rate, respectively. In the pressure drop, the accuracy of the proposed program for a plate and shell heat exchanger is within ${\pm}3%$ and 5% error bounds for the type A and type B, respectively.

  • PDF

A study on the pressure drop characteristics of plate and shell heat exchangers (Plate and Shell 열교환기의 압력강하 특성에 관한 연구)

  • Seo, Moo-Kyo;Kim, Young-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.25-30
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) has been applied to the refrigeration and air conditioning systems as evaporators or condensers fur their high efficiency and compactness. The purpose of this study is to analyze the characteristics of pressure drop in plate and shell heat exchanger. An experiment for single phase (low pressure drop in plate and shell heat exchanger was performed. Also numerical work was conducted using the FLUENT code for $ {\kappa}-{\varepsilon}$ model. The dependence of friction factor on geometrical Parameters was numerically investigated. The study examines the internal flow and the pressure distribution in the channel of plate and shell heat exchanger. The results of CFD analysis compared with experimental data, and the difference of frictor factor in plate side and shell side are 10% and 12%, respectively. Therefore, the CFD analysis model is effectively predict the performance of plate and shell heat exchanger.

  • PDF

Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area (동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

A Study on Plate & Shell type Evaporator in HVAC System for Offshore Plant (해양플랜트 HVAC 시스템용 플레이트·쉘 타입 증발기에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Chiller systems which have better temperature stability than Direction expansion coils are often used as condensing units in HVAC systems for offshore plants. Large capacity compressors and electronic expansion valves in chiller systems are mostly imported, and the size of a chiller system depends on heat exchangers such as evaporators and condensers which are locally produced. Due to limited space in the offshore plants, shipyards are demanding manufacturers to make equipment compact. In this paper, a shell & tube heat exchanger, which is used as an evaporator in the conventional flooded chiller system, is replaced by a newly developed compact plate & shell heat exchanger. The main development process of the plate & shell heat exchanger is introduced, and its performances were experimentally evaluated with a real flooded chiller system, and the results are presented.