• Title/Summary/Keyword: Plate Recognition

Search Result 332, Processing Time 0.019 seconds

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

A Study on the License Plate Recognition Based on Direction Normalization and CNN Deep Learning (방향 정규화 및 CNN 딥러닝 기반 차량 번호판 인식에 관한 연구)

  • Ki, Jaewon;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.568-574
    • /
    • 2022
  • In this paper, direction normalization and CNN deep learning are used to develop a more reliable license plate recognition system. The existing license plate recognition system consists of three main modules: license plate detection module, character segmentation module, and character recognition module. The proposed system minimizes recognition error by adding a direction normalization module when a detected license plate is inclined. Experimental results show the superiority of the proposed method in comparison to the previous system.

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Recognition of Car License Plate using Kohonen Algorithm

  • Lim, Eun-Kyoung;Yang, Hwang-Kyu;Kwang Baek kim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.785-788
    • /
    • 2000
  • The recognition system of a car plate is largely classified as the extraction and recognition of number plate. In this paper, we extract the number plate domain by using a thresholding method as a preprocess step. The computation of the density in a given mask provides a clue of a candidate domain whose density ratio corresponds to the properties of the number plate obtained in the best condition. The contour of the number plate for the recognition of the texts of number plate is extracted by operating Kohonen Algorithm in a localized region. The algorithm reduces noises around the contour. The recognition system with the density computation and Kohonen Algorithm shows a high performance in the real system in connection with a car number plate.

  • PDF

Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm (객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘)

  • Na, Min Won;Choi, Ha Na;Park, Yun Young
    • Journal of Information Technology Services
    • /
    • v.20 no.6
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

Recognition of License Plate with Brightness and Tone of Color Data (명암과 색상 정보를 이용한 번호판 인식)

  • Lee, Seung-Su;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.528-531
    • /
    • 2003
  • Recognition of licence plate becomes a key issue to many traffic related application such as road traffic monitoring or parking lots access control. In this paper, the brightness, YIQ and HSI methods were used to locate a license. After the characters in license plate were extracted, template matching method was applied for character recognitions. To test the performance of the proposed algorithm, images of seventy vehicle were tested. The success rates for license plate and character recognition were approximately 99%, and 96%, respectively

  • PDF

Mongolian Car Plate Recognition using Neural Network

  • Ragchaabazar, Bud;Kim, SooHyung;Na, In Seop
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.20-26
    • /
    • 2013
  • This paper presents an approach to Mongolian car plate recognition using artificial neural network. Our proposed method consists of two steps: detection and recognition. In detection step, we implement Flood fill algorithm. In recognition step we proceed to segment the plate for each Cyrillic character, and use an Artificial Neural Network (ANN) machine - learning algorithm to recognize the character. We have learned the theory of ANN and implemented it without using any library. A total of 150 vehicles images obtained from community entrance gates have been tested. The recognition algorithm shows an accuracy rate of 89.75%.

  • PDF

Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2 (YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식)

  • Dang, Xuan-Truong;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.713-725
    • /
    • 2019
  • Automatic License Plate Recognition (ALPR) is a technology required for many applications such as Intelligent Transportation Systems and Video Surveillance Systems. Most of the studies have studied were about the detection and recognition of license plates on cars, and there is very little about detecting and recognizing license plates on motorbikes. In the case of a car, the license plate is located at the front or rear center of the vehicle and is a straight or slightly sloped license plate. Also, the background of the license plate is mainly monochromatic, and license plate detection and recognition process is less complicated. However since the motorbike is parked by using a kickstand, it is inclined at various angles when parked, so the process of recognizing characters on the motorbike license plate is more complicated. In this paper, we have developed a 2-stage YOLOv2 algorithm to detect the area of a license plate after detection of a motorbike area in order to improve the recognition accuracy of license plate for motorbike data set parked at various angles. In order to increase the detection rate, the size and number of the anchor boxes were adjusted according to the characteristics of the motorbike and license plate. Image warping algorithms were applied after detecting tilted license plates. As a result of simulating the license plate character recognition process, the proposed method had the recognition rate of license plate of 80.23% compared to the recognition rate of the conventional method(YOLOv2 without image warping) of 47.74%. Therefore, the proposed method can increase the recognition of tilted motorbike license plate character by using the adjustment of anchor boxes and the image warping which fit the motorbike license plate.

Segmentation and Recognition of Korean Vehicle License Plate Characters Based on the Global Threshold Method and the Cross-Correlation Matching Algorithm

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.661-680
    • /
    • 2016
  • The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP (DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85% segmentation and recognition accuracy rates, respectively for Korean LPs.