• Title/Summary/Keyword: Plate Modeling

Search Result 522, Processing Time 0.03 seconds

Shape Optimization of Cutouts in a Laminated Composite Plate Using Volume Control (체적제어에 의한 적층 복합재 구멍의 형상 최적화)

  • Han, Seog-Young;Ma, Young-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1337-1343
    • /
    • 2004
  • Shape optimization was performed to obtain a precise shape of cutouts including the internal shape of cutouts in a laminated composite plate by three dimensional modeling using solid element. Volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. It makes Tsai-Hill failure index at each element uniform in laminated composites under the predetermined volume a designer requires. Shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study; (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure indices of the optimal shapes were remarkably reduced comparing with those of the initial shapes.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

A new plate model for vibration response of advanced composite plates in thermal environment

  • Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.369-383
    • /
    • 2018
  • In this work, a novel hyperbolic shear deformation theory is developed for free vibration analysis of the simply supported functionally graded plates in thermal environment and the FGM having temperature dependent material properties. This theory has only four unknowns, which is even less than the other shear deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical model are performed to demonstrate the efficacy of the model.

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Numerical and Experimental Investigation of Thermal Behavior of a Radiation Heater for Flip-Chip Bonders (플립칩 본더용 복사형 히터의 열특성 해석 및 시험)

  • Lee, Sang-Hyun;Kwak, Ho-Sang;Han, Chang-Soo;Ryu, Do-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1645-1650
    • /
    • 2003
  • A numerical and experimental study is made of thermal behavior of a hot chuck which is specially designed for flip-chip bonders. The hot chuck consists of radiant heat sources and a heated plate of very high conductivity, which is for achievement of high-speed heat-up. A simplified numerical model is developed to simulate unsteady thermal behavior of the heated plate. Parallel experimental work is also conducted for a prototype of the hot chuck. Based on the experimental data, the numerical model is tuned to improve the reliability and accuracy. Design analysis using the numerical model is conducted. The results of numerical computations illustrate that the radiant heater system adopted in this study satisfies the key design requirements for a high-performance hot chuck.

  • PDF

Jet Flow Interactions in the Practical Airframe Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.20-21
    • /
    • 2006
  • Three kinds of jet flows encountered in the practical airframe design phase are discussed in this paper. Firstly, the side jet effect on the cavity flow over the flat plate was investigated. Secondly, the aerodynamic modeling of side jet influence on body-tail configuration was presented. Computational study of the similarity parameters was done to minimize the wind tunnel test. Lastly, supersonic jet impingement on a flat plate surrounded by solid walls was simulated numerically for both axi-symmetric and three-dimensional calculations with moving body method.

  • PDF

Simulation on Characteristics of Constant Power Regulator Systems in Variable Displacement Axial Piston Pump (사판식 가변 용량형 액셜 피스톤 펌프의 일정출력 레귤레이터 특성 시뮬레이션)

  • Lee, J.M.;Park, S.H.;Park, Y.H.;Lee, H.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, modeling and numerical simulations has been performed to investigate performance characteristics of constant power regulator system for swash plate type axial piston pump. The commercial numerical simulation software, AMESim was applied for analyzing the dynamic behavior of constant power regulator system of swash plate axial piston pump. The validity of simulation model of constant power regulator system is verified by comparing simulation results with experiments. Also, the behavior of main components of constant power regulator system such as spool, sleeve and counterbalance piston is investigated using the results of computer simulation.

FEA of the blast loading effect on ships hull

  • Hamdoon, Muhsin;Zamani, Nader;Das, Sreekanta
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.223-239
    • /
    • 2011
  • In combat operations, naval ships may be subjected to considerable air blast and underwater shock loads capable of causing severe structural damage. As the experimental study imposes great monetary and time cost, the numerical solution may provide a valuable alternative. This study emphasises on numerical analysis for optimization of stiffened and unstiffened plate's structural response subjected to air blast load. Linear and non linear finite element (FE) modeling and analysis was carried out and compared with existing experimental results. The obtained results reveal a good agreement between numerical and experimental observations. The presented FE models can eliminate confusion regarding parameters selection and FE operations processing, using commercial software available currently.

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Dynamic Modeling and Simulation of a Hybrid Heat Pump (하이브리드 열펌프 동적 모델링 및 시뮬레이션)

  • Shin, Younggy;Kim, Jae Hyun;Yoo, Byeong Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.406-412
    • /
    • 2013
  • A hybrid heat pump is under development with the goal of utilizing 120% of primary energy resources. A plate heat exchanger is added between the compressor and air-cooled condenser of an ordinary heat pump to heat water. For successful operation of the heat pump, it is necessary to develop a control algorithm under various operating conditions. As a virtual test bed for that purpose, a dynamic model has been developed, to simulate its dynamic behavior. It was modeled in transient one-dimensions, with varying phase lengths considered. The model was implemented in Matlab and Simulink. Simulation results were effectively applied to design a control algorithm. They also provided physical insight into how to design and operate the system.