• Title/Summary/Keyword: Plate Load Test

Search Result 586, Processing Time 0.025 seconds

A Study on Theoretical Analysis for Reinforced Concrete Transfer Girder of Hybrid Structures (복합구조의 철근콘크리트 전이보에 대한 이론적 해석 연구)

  • 권기혁;이춘호;김민수;이한선;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.623-628
    • /
    • 2000
  • In this paper, the behavior for transfer girder of the upper-wall and lower-frame structures was studied by the nonlinear finite element analysis. It was analyzed and compared with the experimental results. Analysis results showed that failure modes were progressed by a initial diagonal crack in the shear span between the edges of the load and intermediate support plate. The nonlinear finite element analysis could predict deformation, principal stress, ultimate load and concrete crack. Also analysis results showed good agreement the test results.

  • PDF

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.

Applicability Evaluation of ㄱ Type Perfobond Rib Shear Connectors (ㄱ형 Perfobond 리브 전단연결재의 적용성 평가)

  • Lee, Heung-Su;Chung, Chul-Hun;Kim, Byung-Suk;Kang, Jae-Yoon;Sohn, You-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.410-413
    • /
    • 2006
  • The ㄱ type perfobond rib shear connector is a ㄱ type flat steel plate with a number of holes punched through. This connector can be effectively used in girder with high shear. The ㄱ type perfobond rib shear connector exhibit very stiff behaviour under service load conditions and also had the characteristic of retaining a significant amount of load after the attainment of ultimate capacity. The ㄱ type perfobond rib shear connector with safety factor of 3 is applied shear connector of CFT composite girder. From static test result of CFT composite girder, relative displacement of 0.01mm measured at the service load moment. At design of the ㄱ type perfobond rib shear connector, applying safety factor of 3 was more conservative than test result.

  • PDF

Fatigue Characteristics of Precast Concrete Bridge Decks under Wheel Load Condition (윤하중조건에서의 프리캐스트 콘크리트 바닥판 피로특성)

  • Joo, Bong-Chul;Park, Hung-Seok;Kim, Young-Jin;Song, Jae-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.394-397
    • /
    • 2006
  • For checking fatigue safety and endurance of precast concrete deck and loop joint system in the steel plate girder composite bridge, the test composite bridge model was made for the fatigue experiment by the wheel load machine. The fatigue tests of 1,000,000 cycles were implemented according to wheel load condition of DB24 rear axle of Korea Highway Design Code. From the test results, the loop joint system for the precast deck has a sufficient flexural capacity. Although a little lower longitudinal continuity capacity is evaluated than general sound cast-in-place RC bridge deck, there is no problem about the safety. The overall fatigue level of safety defined by the code is satisfied.

  • PDF

Evaluation of Degree of Compaction of Railroad Trackbed Fills Using Elastic Wave Velocities (탄성파 속도를 이용한 철도 토공노반의 다짐도 평가)

  • Kim, Hak-Sung;Jung, Young-Hoon;Gang, Dong-Yeob;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1650-1658
    • /
    • 2011
  • The quality control of compaction fills has been commonly performed via the field density measurement and plate load tests. However, the engineer frequently encounters difficulties in actually controling the quality due to the uncertainty in the field density measurement as well as the plate load tests. To overcome these difficulties, Park et al. (2009) proposed an alternative quality control method based on the measurement of the compressive wave velocities. In this study, the compressive wave velocities measured in the full-scale model test site were analyzed. Direct arrive seismic tests were performed after the completion of each trackbed layer. To identify a relationship between elastic wave velocities and degree of compaction, laboratory compaction tests were conducted.

  • PDF

Load-resisting characteristics for RC Retrofitting Columns under Cyclic Loads (반복하중을 받는 RC 기둥보강부재의 내력특성실험)

  • 김종임;홍남표;윤정배;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.589-596
    • /
    • 1998
  • Experimental studies are investigated for RC column retrofitting under cyclic load. Design considerations are jacketing of steel plate of carbon fiber with epoxy bonding, use of unbonded plate, additional concrete grouting, ratio of additional longitudinal steel reinforcement and longitudinal configuration of additional ties. Investigated results are 1) jacketing and additional reinforcements are effective for strengthening, 2) use of additional grouting is less effective with respect to increased section. Future studies are needed to evaluate the requirements about additional reinforcements for member stress level, 3) bond between original and additional grout concrete.

  • PDF

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

Improvement and Evaluation of Earthquake Resistant Retrofit Techiques for Remodeling of Structural Performance in Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 리모델링을 위한 내진보강 기술의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Lee, Sang-Mog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.175-182
    • /
    • 2001
  • Five reinforced concrete frames were constructed and tested to study the structural performance of retrofitting effect reinforced concrete frame during and load revesals simultaneously. All specimens were modeling in one-third scale size. Experimental research was carried out to develop and evaluate the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, ALC panel, steel plate system with or without stiffener. Experimental programs wore carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFAR, RFSR, RFSR-S), designed by the improvement of earthquake-resistant performance, were attained more load-carrying capacity, energy dissipation capacity, and stable hysteretic behavior.

  • PDF

Prediction and Evaluation of Characteristics of Air Spring for Railroad Vehicle (철도차량용 공기스프링의 특성 예측 및 평가)

  • Kim, Wan-Doo;Hur, Shin;Kim, Suk-Won;Kim, Young-Gu
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.626-633
    • /
    • 2000
  • An air spring which is a part of the railroad vehicle suspension system is used to reduce and absorb the vibration and the noise. Main components of the air spying are a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring. The characteristics of the air spring which are the load capacity, the vertical and the horizontal stiffness are depended on the configuration of rubber bellows, the angle of cord and the mechanical properties of cord. The computer simulation using commercial finite element analysis codes are executed to predict and evaluate the load capacity and the stiffness. The appropriate shape and cord angle of the air suing are selected to adjust the required performance of the air spring. Several samples of the air spring are manufectured and experimented. It is shown that the results by computer simulation are in close agreement with the test results.

  • PDF

Stiffness Reduction Factor for Flat-Plate Structures under Combined Load (조합하중을 받는 무량판 구조의 강성 감소 계수에 관한 고찰)

  • 송진규;최정욱;윤정배
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.302-310
    • /
    • 2003
  • Cracking of slabs will be caused by applied load and volume changes during the life of a structure and thus it reduces flexural stiffness of slabs. The effect of slab cracking must be considered for appropriate modeling of the flexural stiffness for frame members used in structural analysis. Analytical and experimental study was undertaken to estimate the stiffness reduction of slabs. In the analytical approach, the trend of slab stiffness reduction related to gravity and lateral loads is found and the stiffness reduction factor ranged from a half to a quarter in ACI building code is reasonable when defining range. Analyzing results of the test by Hwang and Moehle for 0.5% drift show that the differences of rotational stiffness on the connection types is found and good results of lateral stiffness using the value of one-third is obtained.

  • PDF